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By means of model calculations for an independent-electron metal, we calculate the
photon absorption and emission spectra of core states, including conduction-electron re-
laxation. We find an x-ray edge anomaly merging into a spectrum resembling that of
screened-exciton theory. Neither of these theoretical limits adequately represents the
detailed structure of the exact results.

This Letter reports exact solutions of a model
for x-ray absorption and emission in metals. Re-
cent attention to core spectra of metals has fo-
cused on the threshold anomaly caused by the con-
duction-electron response to the suddenly changed
core field. This anomaly has been discussed by
Nozieres and de Dominicis (ND)' and other work-
ers, ' using many-body methods for very large
numbers of conduction electrons. Our approach
is to solve the same model exactly for small num-
bers of conduction electrons (& l0') using Slater
determinants. ' As in recent investigations of x-
ray photoelectron spectra (XPS) by similar meth-
ods, ' the absorption and emission profiles are in-
sensitive to the size of the metal. The present
results show departures from the ND asymptotic
result for the threshold anomaly within ~ 0.03EF
of the threshold itself (EF is the Fermi energy).
The main features of the spectra arise from the
perturbed density of one-electron states in the
central cell, and can be represented with fair ac-
curacy for weak final-state interactions by an
analog of Elliott exciton theory. ' '

We start with the ND initial-state Hamiltonian
s
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H = E ' +U(r&)
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and the final-state Hamiltonian
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H~ = Q +U(r, )+V(ri).

for the conduction electrons. U is the one-body
potential near the central cell in the ground state
and U +V the potential in the final state. The ab-
sorption process injects a core electron into the
conduction band; the summations over momenta,

p, , and one-body potentials therefore run over N

electrons in the ground state and N+1 electrons
in the excited state. V(ri) is the one-body final-
state interaction introduced by the core hole. For
emission, H& and H& are reversed. We follow ND
further in neglecting exchange between the core
hole and the conduction band; the ground- and ex-

cited-state wave functions are then p, 4 and +;
p, is the core orbital; 4 is the Slater determi-
nant of the N-band one-electron eigenfunctions p,.
of H&,

' and + is the determinant of the N+1 eigen-
functions g& of H&.

It will suffice to investigate a core p level of
very small radius a, .' The optical matrix ele-
ment (i M~fn) connecting the initial Slater deter
minant i) to a particular final configuration

~ fn)
is then

(Pl t 41) (%1 P 42) (Pl t ON+1)

( Pg & 41) (+N s 42) (+s& IN+1)

with% = (y, ~ r~P, )/$„(0) 'The . absorption profile
ls

(4)

Here E, is the excitation threshold energy; E&„
and E& are the total energies of the final and ini-
tial (N+I)-particle states. In a spherically sym-
metrical system the one-particle overlap matrix
elements (g, y) are zero for unlike angular mo-
menta, and the profile (4) is therefore a convolu-
tion of independent contributions from different
angular momenta. Here we confine attention to
the physically interesting optical channel and con-
sider only s-wave band states in a single spin
channel.

The spectra are computed as follows: The Fer-
mi wave vector (and hence the electron density)
is chosen, the gas is enclosed in a box of radius
R =N11/hF, the orbitals y~ and y, are determined
for the chosen U and V, the determinants (i~ M

~fn)
are computed for various final states

~ fn), and
the spectra are evaluated for N = 5, 10, 20, 40,
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. 1. Core spectra for a square-well final-state
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The first measurements are reported of simultaneous, transient, photoinduced optical
absorption (PA) and photoconductivity (PC) in an amorphous semiconductor (a-As2Ses).
Measurements in the time range 100 ns to 1 ms show that the same density of excited
carriers gives rise to both effects. PA is observed only when carriers are in localized
states, whereas PC is observed for both hot carriers (p, v-~7@10 ~ cm V ) and localized
carriers.

The concept of localized states with an effective
negative correlation energy' has explained a long-
standing puzzle in the study of chalcogenide glass-
es, namely the pinning of the Fermi level in the
absence of electron spin paramagnetism. Recent
models" have applied this concept to specific
bond-coordination defects in the glass structure
in order to explain not only the diamagnetic
ground state but a wide variety of excited-state
phenomena as well. Of these phenomena, carrier
transport and photoinduced ESR and optical ab-
sorption are thought to be direct probes of the
density, structure, and charge of these defects.

In a-As, Se„ the best characterized of the com-
pound chalcogenide glasses, a trap-limited car-
rier transport mechanism has been proposed '
to account for the large, -0.6 eV, activation en-

ergy of the hole drift mobility. The defect mod-
els identify this hole trap with the singly coordi-
nated defect which is negatively charged in its
ground state. The ESR signal and optical absorp-
tion band which appear together during illumina-
tion at low temperatures' are thought to result
from photoionization of the bound electron pair at
this same localized state. In recently reported
experiments, ' however, measurements of carrier
transport and photoinduced ESR and absorption
failed to show the expected correlation.

The drift mobility and photoinduced spin den-
sity were measured in samples of a-As, Se, which
were doped with a variety of impurities. Several
elements (e.g. , Tl, I) changed the hole mobility
while leaving its activation energy the same as
that in the undoped material, strongly suggesting
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