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tions imply that the effects of heavier mesons can-
not be ignored a pviovi simply because of their
shorter range. Further, isospin seems likely to
be a better symmetry for the nucleon-nucleon
system than even the small quark-mass ratios
would suggest. Finally, we have explicitly exhib-
ited these cancellations, as well as the impor-
tance of treating the p width correctly.
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FIG. 2. Dependence of scattering length on magnetic
couplings and p width. The magnetic couplings from
Refs. 4 and 6 are indicated by the points.

Because of the uncertainties due to coupling
constants, it seems inappropriate to add the pseu-
doscalar and vector contributions. Given the im-
portance of those effects, they must be included
and better magnetic couplings determined before
detailed comparison with experiment can be made.

We have presented calculation of charge-sym-
metry breaking in the N-N system arising from
intrinsic SU(2)-symmetry breaking in the strong
interaction arising from quark mass differences.
There are large effects on the scattering length,
of order 1 fm, even after considerable apparently
accidental cancellations in both the pseudoscalar-
and vector-meson contributions. These cancella-
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For renormalizable theories without spontaneous symmetry breaking, a formalism is
developed to systematically extract and evaluate the effects of heavy particles in low-
energy physics through factorized local operators and the renormalization group. As an

application, quantum electrodynamics with electrons and muons is considered and the
effects of muons on the electron anomalous magnetic moment are assessed.

It is an interesting view which is shared by
many of us that the dimensionless coupling con-
stants in various interactions are almost univer-
sal in strength. The breakup into various hier-

archies is really due to the mass scales involved.
In other words, the apparent strengths are inti-
mately tied up with the relative lightness and
heaviness of species of particles and the experi-
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mental conditions under consideration.
It has been shown' that in the absence of the

Higgs mechanism, ' when dealing with low-energy
light-particle physics, the heavy particles can be
neglected to the zeroth-order approximation.
While this is a true statement, it can hardly be
the settling point of any physical theory. On the
one hand, one can increase the incident energy in
an experiment so as to approach the threshold of
the heavier particles. In such a situation, it
should be useful to have a formalism to interpo-
late between the "far away" and the "near" re-
gions, relative to these thresholds.

More important yet, even when we are far away
from directly producing the heavy objects, their
effects can still be felt because of virtual exchang-
es and vacuum fluctuations. These give rise to
phenomena quite distinct from those due to the
lighter sector in isolation. A case in point is, of
course, the weak interaction.

These are what have motivated us to engage in

a systematic study of the following questions:
(1) To a certain level of accuracy to be specified
later, can we catalog the effects of heavy parti-
cles when all other scales are small? If so, can
we make these results quantitative'? We have
affirmative answers to both, and this is a short
report of our findings. Details are being pre-
pared and to be published elsewhere. '

Specifically, we consider quantum electrody-
namics (QED) which contains light photons and
electrons and heavy muons. The charges are
assumed to have a universal value (e). We may
for the moment think it to be quite strong, so
that this model is a prelude to quantum chromo-
dynamics, which is also being pursued. Let ~
be the mass of an electron and M that of a muon.
Let I' ' be the proper amputated Green's func-
tions with B external photons and I' external elec-
trons. We have been able to summarize effects
of the muons to all orders in e by the following
formula:

I' f.ll" = I'
gh
"+(I/M')p C .I';y„"(@.)+o(1/M'),

N, b

where "light" theory is QED with photons and
electrons, i.e. , with all muon loops of the "full"
theory deleted. The C~b's are a set of universal
coefficient functions, which have all the muon ef-
fects in the form of powers of In(M/m). The
8»'s are a set of gauge-invariant local opera-
tors made up of the light fields only. N~ 6 spec-
ifies the naive dimension of the density and b is
a label for operators having the same dimension.
In QED, there are two N= 5 and eight N= 6 rele-
vant operators, although it is convenient in the
intermediate stage to introduce two %=4 oper-
ators, which correspond to photon and electron
kinetic insertions, and one ¹ 3 operator which
effects electron mass insertions.

In the remainder of this article, we shall indi-
cate how Eq. (1) is derived and then write down
a set of Callan-Symanzik-like equations which
allow us to do "improved perturbative" calcula-
tion for C„b. The explicit solutions to these equa-
tions, which include anomalous dimensions evalu-
ated to one-loop order, are given. As an applica-
tion, we comment on the effects of muons on the
electron anomalous magnetic moment (g —2)/2.

Equation (1) is an application of Zimmermann's
algebraic identity, ' which is basically an algo-

(1 —t, ') ~(l') = ~(P) —V(O), (4)

and the generalization is obvious. We can re-
arrange Eq. (2) by adding and subtracting higher
Taylor operators. This gives

! rithm to rearrange renormalized integrands. It
allows us to take the large-M limit at some stage
after the relevant subintegration has been made
sufficiently finite by oversubtraction. This is
how C»/M' are isolated. An example should
make the procedure transparent. Consider the
second-order electron self-energy in which the
second-order vacuum polarization due to a muon

loop is inserted (altogether fourth order). It is
rendered finite by first subtracting the photon
polarization F(l') and then by an overall renor-
malization, i.e. ,

g(P) = — f d l(1-t,~)I(1 —t,')P(l'), (2)
(2w)'

where in the Landau gauge, which will be used
throughout,

I=(-~„,+ l„l,/l')I 'y" (P'-l'-m) 'y",

the t's are the Taylor operators, viz.

Z(P) =- 2").J d4l [(I- t, ')l(1 —t, ') (I~—+t,')f(t, ' —t, ')mr+(t, ' t, ')1(1—t, ')2].- (5)

The first term is readily shown to be O(l/M ) by simple power counting. The second term converges
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sufficiently rapidly in f because of the oversubtraction 1 —t,~, and the limit M'»l' can be taken to re-
place (t, ' —to')n by (o./15m)l'/M'. We may consider it to be the operator-inserted Green's function
I'0'( —,'i Jd4x E"'O'E&„), multiplied by a coefficient C„=n/15n. The third term is also of order 1/M'.
However, the limit M»p should be taken after the f integration. We can regard it as inducing opera-
tors 0;- J d'x y(P', P')g, which are to be inserted into the electron two-point function.

The general case is treated by extending this procedure. We partition a diagram A with muon loop(s)
into an upper part and a lower part. The former is connected, one-particle irreducible, and contains
all the muon loops. The rest is the lower part. A degree 5 of divergence is assigned to this upper
part according to 5= 4+ 2= 6 —B —3I"/2, where d is the naive degree of divergence and B and E are,
respectively, the number of entering photon and electron lines. There are, in general, many parti-
tions we can make for each diagram. We disregard all those with 6(0 and call those with 6)0 heavy
parts. Then, we rearrange the renormalized integrand corresponding to 6 into

g ( t„,Q-I~i, (t„„' f, ')I-, + 0(1/M'),
v.gT U&q %~ )'g U& (6)

II (-! ')I'
U, eN"(~) 3'e U2

In the above formula, 7 is a heavy part and all the subdivergences in the integrand I, are removed con-
ventionally. This is done by applying the fundamental forest formula, where U, is a forest of v which
contains nonoverlapping renormalization parts. The set of all forests not having 7 as an element is
N"(r). The operation t„„'—f~ ', besides making the final integration in T finite, induces local opera-
tor vertices. Such operators have dimensions higher than 4 and therefore the subsequent subtractions
are done with d+ 2 counting if the renormalization parts under consideration contain 7. Otherwise,
they are counted by d. The Taylor operator t„„~must be understood in this sense. The program of
renormalization on the reduced integrand lz,i, is again carried out via the fundamental forest formula
in which the divergent parts are grouped into forest U,. %' is the set of all these forests. T is the set
of all heavy parts.

If we just want a factorization formula, then the mission is almost accomplished. However, we want
to have a method to calculate the coefficient functions. Note that what we are after are 1/M' effects.
We need to account for mass insertions, just as in short-distance expansions when nonleading singu-
larities are extracted. The bookkeeping of their effects" can be efficiently done by generalizing the
subtraction procedure. Thus we add a small parameter A. uniformly to the free-electron inverse propa-
gator and renormalize electron self-energy according to Z(p, A) = Z(p', X) —Z(0, 0) —p(8/Bp) Z(0, 0) —A(8/
Q.) Z(0, 0), where Z means that the subdivergences have been recursively removed. The renormaliza-
tions of the photon polarization and the vertex are similarly generalized. For counting purposes, one
may treat A. like an extra momentum. At the end, physical quantities are recovered by taking the limit
p -0. Since the forest formula is an algebraic statement, it can be extended to include A, in the Taylor
operators. Equation (6) will now be so understood.

We use p generically to denote momenta external to T. Then Eq. (6) becomes
d{7) +g

R p p g p g ( f f)(culpa(7)+a- tI „)C (a)
7EZ' 0 C 7'EUi a=1 l=o1

where the coefficient functions are

(7)

C "=(ft[d(~)+a-f] i) '(si»)'(&/&P)""" 'I, I,=.=. . (6)

Because the factor A'p~(' " ' depend only on what joins T and 6/7, but not on the details of either of
them, they can be converted into a set of local operators. Thereupon Eq. (1) is obtained. We now
make two remarks: (i) Our subtraction procedure respects Ward identities and therefore the opera-
tors 5~ are gauge invariant. (ii) In Eq. (8), the factors A.

'p~('~" ' for a= 1, 2 differ in dimension by
one unit. However, the same Taylor operator —t„„~subsequently acts on them. This means that
those operators with a = 1 are oversubtracted. We reexpress them by the set of normally subtracted
ones with A.-dependent coefficients. After some analysis, it is found that the coefficient functions have
the structure

my5-N( (5 E) + g6 N( ( E)6
Nb Nb Nb
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where $'s are dimensionless and A. independent. We should remind ourselves that only („' and $„(')
are physical.

The derivation of the scaling equations follow the usual argument. The starting point is to make use
of the multiplicative nature of the renormalization. In the light theory without the muons, this is

[I'~P(6 )] g &)2g &i2g ii & &(8 )

where Z, , are the wave-function renormalization constants and Z is the operator renormalization ma-
trix. We vary with respect to m and hold e„m„and A fixed. This yields (repeated indices summed)

([ ( / ) P ( / )- (1 P-)( / )» -+y]~. +, y. ),I'"(8 )=o, (10)

where the p's and y's are related to mass variation of e and g. The unfamiliar term md%/dm =— —m(1
—P~) arises because the renormalization procedure requires the electron bare mass to have the form
1Rp a, + A,b, with a, and b, independent of X. A vari ation in m induces a change in ~ . Further more it is
seen that p), = pz(') + Ap~')/m, where p~') and p(') are X independent. The mixing matrix elements y~~
have the properties that (a) they vanish for N ) M and (b) they can be written as y„,~= X" y~(, ~i, where

y„",~~' is A. independent. The rest of the p's and y's are also X independent. The equation for I'e' itself
has the form of Eq. (10) in which the replacement 5~~ —1, y~ ~ —0 should be made.

Let us turn to the full theory, where only Green's functions are needed. A parallel argument leads
to an equation similar to that for I',@„, , except that all the p's and y's now have rather complicated
dependence on X. Let us star them (e.g. , p, *, etc. ) to differentiate from those in the light theory.
There is an extra term due to an induced change of M. This can be shown to give 1/M' effects and

can be dropped. After we substitute Eq. (1) into the scaling equation of the full theory and make use
of Eq. (10), we find

r"(6„)(( (&I& )+() (&le ) [ . () (),"-') &P-,'&)(~i»))~„.,.-~,,
„'c

+m'[&y„e(s/ae) —mbpz(&/&X) -BEy„-FAy]I' '~=0, (11)

where we have defined y„*—y„=(m'/M')b. y„, etc. , and superscript T denotes transposition. In this
expression, the Green's functions and the operator-inseted ones are all of the light theory. The ln(M/
m)-dependent quantities are C~, ~„,hy» and Aye. We decouple Eq. (11)by looking into the two-,
three-, and four-point functions and expanding them in powers of X. After using some identities which

account for the effects of 6„and 64, on general Feynman diagrams, we obtain

(8/8 )+P.(s/e )+1]~... -y,.. '"'j&. "' —(1-P ")&,."'=0,

[(m(8/am)+ p.(e/e e)5,.„-y,.„'('&]~„(') = 0.

(12)

(13)

5.P'=(.,"'=-(T';)(~/1»)(y -y '), &.,"'=-(~)(~/1»)(y-y '), (.."'=(~)(~/1»)(y+y '),
(15)( "'=( "'=-( "'=-& "'=(~/I»)[(')y-(")y '+3y "].

all other $'s = 0 (i.e. , nonleading);

where y = (e/e)' = 1/[1 —(~}(a/4m) ln(M/m )] is the
factor for the running coupling constant e. %e
have explicitly verified these $'s to the two-loop
order.

As an application we have used these results to
assess the effects of muons on the electron anom-
alous magnetic moment. Taking the on-shell cor-
rections into account, we found that to all orders
in cv the leading logarithms cancel. ' The effects

I are thus of order (m/M)'n'[n ln(M/m)']". The de-
tails of this calculation will be reported else-
where.

We are presently extending this work to quan-
tum chromodynamics. In particular we hope to
have an interpolation formula for e'e - anything
before and after various quark thresholds are
passed.
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It is surprising that all we need in solving these equations are P's and y's of the light theory and the
values of $„~")and $„~" at a point in M/m. Because the P's and y's do not have large ln(M/m)'s, we
can calculate them perturbatively. After we feed in the one-loop information, we obtain the leading-
logarithm result'
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The corresponding operators are

e5g 5p =i Jd4» g [(iD)',

(s/2)aqua

F""]g,

eg) 6) =i $d»g [(iD) iP, eI'p~'y"D", ey" (8"Jip„),
ie—S„'„o""P/2, S'„„5'Z""/4] q;

866 68 are four-fermion operators.
It may be noted that the lowest-order contribution to

electron (g —2)/2 is (o. /») (m/M) &1/45 [B.E. Lautrup
and K. de Rafael, Phys. Rev. 174, 1835 (1968)]. The
question arises whether the next-order correction may
be of order (o. /») (m/M) [1n(m/M)], which is compara-
ble to (n/») and therefore should become important in
view of the work in progress by T. Kinoshita. Our an-
swer is that such effects due to muons do not exist.
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A number of properties of possible baryon- and lepton-nonconserving processes are
shown to follow under very general assumptions. Attention is drawn to the importance of
measuring p,

+ polarizations and v, je+ ratios in nucleon decay as a means of discriminating
among specific models.

Of the supposedly exact conservation laws of

physics, two are especially questionable: the
conservation of baryon number and lepton num-

ber. As far as we know, there is no necessity
for an a priori principle of baryon and lepton con-
servation. As we shall see, even without such a
principle, the fact that the weak, electromagnet-
ic, and strong interactions of ordinary quarks
and leptons conserve baryon and lepton number
can be understood as simply a consequence of the
SU(2)S U(l) and SU(3) gauge symmetries. Also,
in contrast with the conservation of charge, col-
or, and energy and momentum, the conservation
of baryon number and lepton number are almost
certainly not unbroken local symmetries. ' Not

only is baryon conservation unnecessary as a
fundamental principle, the apparent excess of
baryons over antibaryons in our universe pro-
vides a positive clue that some sort of physical
processes have actually violated baryon-number
conservation. ' Violations of baryon and lepton

conservation are likely to occur in grand unified
theories that combine the gauge theory of weak
and electromagnetic interactions with that of
strong interactions and have leptons and quarks
in the same gauge multiplets, and such violations
have been found in various of these models. '

The purpose of this paper is to point out those
features of baryon- or lepton-nonconserving proc-
esses that are to be expected on very general
grounds. Other features will be indicated that
may be used to discriminate among specific mod-
els.

No grand unified model or other specific gauge
model of baryon- and lepton-nonconserving proc-
esses will be adopted here. Instead, it will sim-
ply be assumed that these processes are mediat-
ed by some unspecified "superheavy" particles,
with a characteristic mass M above, say, 10'4
GeV. Such large masses are indicated by the ex-
perimental lower bound' on the proton lifetime,
and are also required in order that these parti-
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