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The dipole and Ruderman-Kittel-Kasuya- Yosida interactions between impurity spine in
a superconductor are suppressed at long wavelengths. This results in a maximum in the
neutron scattering at a temperature-independent wave number. It is essential to use non-
local theory for the diamagnetic screening by the superconducting electrons. The local
London approximation affects the neutron scattering cross section and overestimates the
spin fluctuation energy by one order of magnitude.

In this note we wish to report results on the
theory of spin correlations in ferromagnetic su-
perconductors, which we have obtained in mean-
field theory, taking into account the effect on the
spin fluctuations of the superconducting electrons.
At the time that our report was being prepared
for publication, the work of Blount and Varma'
came to our attention. In this paper we will,
therefore, in addition to presenting our own re-
sults, discuss the ways in which they differ from
those of Blount and Varma. The principal differ-

ence is that the diamagnetic response of the su-
perconducting electrons to the spin impurities is
drastically affected by nonlocality. This reduces
the change in free energy by an order of magnitude
and makes the spin fluctuations more compatible
with the superconducting state. The nonlocality
also affects the "shape" of the spin correlations.
Furthermore, we include the Ruderman-Kasuya-
Kittel-Yosida (RKKY) interaction in our calcu-
lation, Both of these aspects of our theory ought
to be verifiable by neutron scattering.
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&(q) = «(1 —q'/q D'). (2)

Substitution of Eq. (2) into Eq. (1) gives the Orn-
stein-Zernike result, '

y„'(q, K) = (4v/qD')(q'+ K').

The square of the inverse correlation length is
K' = (qD'/4mC)(T —Tc) (4)

The Curie temperature is Tc =4~C. The critical
exponents have their mean-field values, v= —', and
+=2v= 1.

The transverse magnetic field of wave number
q which is produced by the spin fluctuations will
be shielded in the superconducting state by the
diamagnetic response of the superconducting
electrons. If we should use the local London
equation and the local London penetration depth,

A strong indication of the important role played
by the RKKY interaction has been noted by Redi
and Anderson' who find that the assumption of
purely magnetic dipole interaction in the rare-
earth Chevrel compounds leads to antiferromag-
netic rather than to the observed ferromagnetic
ordering. They conclude that the favoring of the
ferromagnetic state ".. .is due to conduction elec-
tron effects. " Therefore we regard any treatment
of the spin correlations which neglects the RKKY
interaction as unrealistic. Neverthrless, in spite
of the relative importance of the RKKY interac-
tion compared to the dipole interaction, we can
treat it on an absolute scale as a weak perturba-
tion on the superconducting electrons. It is the
experimental fact of the weak coupling of the spins
to the electrons and the occurrence of a first-
order rather than a second-order transition that
permits us to adopt a perturbation theory ap-
proach, using linear-response functions for the
super conducting electrons.

The Weiss mean-field theory gives X ', the re-
ciprocal of the spin susceptibility, in terms of the
Curie susceptibility, yc =C/T, as

x '=xc ' —~~

where A. is the Weiss molecular-field coefficient.
A. is the ratio of the molecular field to the mag-
netization density. For a transverse magnetic
polarization density of very long wavelength,
there is no depolarizing effect and the Weiss field
is 4m times the magnetization density. Thus,
X=4m. At the finite wave number q, A is reduced
by the fraction (q/qD)', where qD is a Debye cut-
off, inversely proportional to the average inter-
spin spacing. Theref ore,

Xz, the screening factor would be (1+q 'A. z ') '.
But both from the sum rule" and from BCS' the-
ory it is known that local London screening is a
gross overestimate in the large-q range. This is
particularly true for weak superconductors,
where the correction factor for nonlocality is
(quan) '. This serves to define the "diamagnetic
coherence length" $D, which in weak superconduc-
tors is generally an order of magnitude larger
than XL, under the assumption that the electron
mean free path is not especially small. The
Weiss coefficient becomes, consequently, in the
superconducting state,

4m= z„(q)—
q q~AL

(5)

q, =qD /~D~L . (8)

With $~/&„-10 and qD&„-10', Eq. (8) shows q,
to be somewhat more than one order of magni-
tude smaller than qD, which justifies the approx-
imation in Eg. (5).

In the above treatment of the nonlocal electro-
dynamics we have ignored l, the finite mean free
path of the conduction electrons. This is justified
because we are probing the electron system at
neutron-scattering wavelengths of the order of

q, '. As noted above, this is only one order of
magnitude greater than the interatomic spacing.
As better samples become available, with larger
l values, the approximation q/»1 will become
even better. It might be objected that the samples
are generally type-II superconductors, while the
treatment given here would be appropriate for a
type-I superconductor. But this would be incor-
rect and in the present context the usual classifi-
cation scheme is irrelevant. By probing at dis-
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Substitution of Eq. (5) into Eg. (1) yields for the
inverse spin susceptibility in the superconducting
state

4m, qD2

=4v(q, /qD)'X& '(x, K),

where the scaled dimensionless inverse suscep-
tibility is

y, '(x, K) =x'+x '+P,
with K= K/q, and x =q/q, . Here we have intro-
duced the characteristic wave member q, defined
by
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tances less than / we can effectively set l equal
to infinity.

Equation (7) determines the stiffness of the
system with respect to spin fluctuations at the
scaled wave number x =q/q, . A further effect
on the magnetic stiffness is produced by the
RKKY' interaction between spins, mediated by
the conduction electrons. This can be visualized
as a polarization cloud of conduction-electron
spin surrounding each localized impurity spin.
In the superconducting state a second polarization
cloud appears, ' of opposite sign and of range many
orders of magnitude larger ($n instead of qF ',
the reciprocal of the Fermi wave number). The
strength of the second, extended cloud is such
that the two clouds cancel exactly (in the absence
of spin-orbit effects), in the q —0 limit. But
most of the extended negative polarization cloud
becomes ineffective' as soon as q gets larger
than $n '. In that case only the fraction (q/D)

'
of the RKKY interaction is lost in passing to the
superconducting state. This means that, if the
RKKY interaction is contributing to the Weiss
field, we must add to X~ the additional stiffness
K/x, giving
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X, '(x, a,K) =x'+(K/x)+x '+Pc',

where K is a dimensionless RKKY strength pa-
rameter.

The upper part of Fig. 1 shows Eq. (9) plotted
versus x for the two values K=O and K= l. Also
shown is the normal-state Ornstein-Zernike stiff-
ness. All curves are drawn for K= 0. Nonzero
values of K simply shift the function up and do
not change its shape. The minimum stiffness re-
mains at the same wave number, independent of
temperature. The neutron-scattering intensity
is determined by the mean-square spin fluctua-
tion and is thus proportional to the reciprocal of
the stiffness, i.e., to X~ itself. This function is
plotted in the lower part of Fig. 1. It will be
seen that the maximum neutron-scattering in-
tensity occurs at a certain temperature-inde-
pendent value of the wave number. The tempera-
ture dependence serves to raise or lower the in-
tensity at the maximum. The dashed curves are
obtained from the London local approximation
rx ' instead of x ' in Eq. (9)], with the additional
neglect of the RKKY interaction, and correspond
to the Blount-Varma calculation. As can be seen,
nonlocality causes the neutron-scattering inten-
sity to drop more abrupt). y on the low-q side of
the maximum, while inclusion of the RKKY inter-
action makes the intensity fall off more slowly
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FIG. 1. Critical spin susceptibility ~ (lower half)
and inverse susceptibility (upper half), vs square of
wave number, with and without HKKY interaction (K=1
and 0, respectively); x =p/p„where p, is a character-
istic wave number determined by the superconductivity
parameters. The curve labeled 0-Z shows the normal-
state Curie-point susceptibility. The dashed curve ne-
glects B,KEY and nonlocality.

on the high-q side. Detailed experimental studies
ought to be able to verify the nonlocal effect and
to fix the RKKY parameter K.

It remains to study the stability of the super-
conducting state with respect to the spin fluctua-
tions. The impurity spins will tend to destroy
the superconducting state by raising its free en-
ergy density relative to the normal state. This
rise is

b,F =E,(K,K) E„(7T,K)-
&sT 3 Xs

'
=

( )3
dkln

(10)

where

0 X +K
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It will be noted that the RKKY constant plays a
key role in the integration. A relatively small
value has a large effect on the value of the inte-
gral. We therefore consider the behavior of
Eq. (11) in the vicinity of K = 0. Linearizing with-
in the integrand, we obtain

I (Tc,K)= I (7, 0) +K ln
max K~qq

where the first term can now be evaluated with
the upper limit set equal to infinity. We observe
that the integral in Eq. (11) is not well behaved
at x =0. This is because in this extreme limit
the approximation of Eq. (5) is no longer valid.
However, as noted in the discussion following
Eq. (5), the approximation is good even for val-
ues of q smaller than q, by about an order of
magnitude. This means that the integral is in
trouble in the very small range 0- x —,', , where
a more accurate X,

' has to be used. For present
purposes we ignore this fine detail and cut off
the integral at a lower limit. The second term
has been evaluated to logarithmic accuracy only.

A rough estimate of the stability of the super-
conducting state can easily be obtained from Eq.
(10). Not shown is the superconducting coher-
ence energy, which lowers the superconducting
state by an amount of the order of q F'(kBT)'/e F.
The ratio of Eq. (10) to the unperturbed super-
conducting coherence energy can therefore be
estimated, by taking I to be -1, as

&F q &F qD q ht &F

qF (ksT) qF kFT qF qD

= 10 F. F/kgT.

One order of magnitude has come from qD'/qF',
the ratio of spin to conduction-electron densities.
The others follow from the estimate for q, /qD
given above. As eF/ksT is -10', Eq. (13) indi-
cates that the competition between superconductiv-
ity and ferromagnetism is quite close. With fur-
ther lowering of the temperature, the ratio in
Eq. (13) will rise above unity, corresponding to

the observed first-order phase transition. ""
If the nonlocality of the diamagnetic response is
neglected and local London theory used, as done
by Blount and Varma, the competition in Eq. (1$)
is an order of magnitude more unfavorable for
the superconducting state. Thus the local approx-
imation might suggest incorrectly a first-order
transition into the paramagnetic state.
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