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Particle Diff'usion by Magnetic Perturbations of Axisymmetric Geometries

particle diffusion in stochastic magnetic
te gyroradius, particle drifts, and magne-
s substantially improved relative to earlier
y followed field lines. Trapped particles

The quasilinear theory of collisionless test
fields is extended to include the effects of fini
tic trapping. Runaway-electron confinement i
estimates which assumed that particles exactl
are not expected to be stochastic.
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We consider the effects of finite gyroradius,
particle drifts, and magnetic trapping on particle
diffusion due to magnetic perturbations of axisym-
metric toroidal equilibria, Previous authors"
have considered the approximation in which par-
ticles exactly follow stochastic magnetic field
lines. The predicted transport rate was very
large even for modest perturbation levels. Here,
we demonstrate quantitatively that the more
realistic particle motions in a torus may reduce
the stochastic transport substantially. In par-
ticular, we predict that runaway electrons are
significantly better confined than the primitive
theories indicate.

We consider two types of magnetic perturba-
tions: those arising from microturbulence, ' e.g. ,
from drift or tearing modes, and those arising
from a coherent magnetic "ripple" field, due
either to coil errors or introduced explicitly as
in ripple injection schemes. ' We allow for both
trapped and passing particles. In this Letter, we
assume for explicitness that the particles are
sufficiently far from the trapped-passing separa-
trix so that the rapid variation of the bounce fre-
quency with bounce action in this region can be
ignored. For passing particles with zero gyro-
radius, our results reduce correctly to the col-
lisionless formulas given in Refs. 1 and 2.

The principal results are as follows': (a) The
diffusion of passing particles in turbulence is
reduced by three effects. In order of importance,
these are (i) an averaging over the mode profile
due to guiding-center drifts, (ii) a shift due to
drifts of the radius at which a particle is reso-
nant with a given mode, and (iii) an averaging
over the mode profile due to finite gyroradius.
(b) Trapped particles in turbulence are not ex-
pected to be stochastic for reasonable turbulence
levels. (c) In a ripple field, passing particles
which are not too far from the separatrix can be
stochastic for perturbation fields of strength ex-
ceeded by proposed ripple injection schemes.

We use a canonical formalism, which deals
succinctly with the unperturbed motion and iso-

lates the resonances due to the perturbation sim-
ply and explicitly. The variables parametrizing
phase space are the canonical momenta I which

are constants of the unperturbed motion, and
their conjugate coordinates e. We deal only with
axisymmetric equilibria, for which one may take
I =—( p, , J„p~) and 6 —= (6~, 6~, 4). Here p, is mc/e
times the usual magnetic moment; the conjugate
coordinate is 0„the gyrophase. Conjugate to the
bounce action J, is the bounce phase 6„.The
third action is p ~, the canonical angular momen-
tum. Since p ~ determines the flux surface about
which a particle oscillates in the course of a
bounce period, it is diffusion in p ~ which dom-
inantly determines diffusion in the "radial" co-
ordinate ~ (in general, a flux surface label). Con-
jugate to p ~ is 4, the bounce-averaged value of
the toroidal angle y. Because I is constant in
the absence of perturbations, the unperturbed
motion is trivial: 6 develops linearly in time,
with frequency Q(I) =(Q„Q„Q).Here Q, is
the bounce-averaged gyrofrequency, Q~ is the
bounce-averaged toroidal drift, and 0, is the
usual "bounce" frequency. (The concept of bounce
motion applies to passing as well as to trapped
particles. For the former, the bounce period
2v/Q, is approxfmately 2&qR/& ~„ the time for a
passing particle to traverse a connection length. )

The theory consists of two parts. (I) For
stochastic motion to occur, the perturbation
strength must be sufficiently large that a stochas-
ticity threshold, determined by an appropriate
resonance overlap criterion, is reached.
(2) Once this occurs, the stochastic motion of a
particle in I space is determined by a diffusion
tensor D(I) in that space. Both the threshold and
D depend on the field-particle c.oupling coeffi-
cients g-, , the Fourier amplitudes of the per-
turbation Hamiltonian with respect to the angle
variables.

To determine g-, , we find it convenient to
introduce the vector potential A and to work in
the radiation gauge (scalar potential vanishes).
If we introduce the notation z—= (0, I), the perturba-
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tion Hamiltonian H, becomes

H, (z, t) = —ev(z) A( r(z), t ).
Fourier transforming in 6, one finds

H, (z, t) =P,g-, g-, (i, a) exp(i 1 6 —iu), t), (2)

g-, (1, a) = (2-n)''Jd'6exp(-iT 6)ev(z) .A'(r(z), &u, ). (3)

Here a represents a set of mode numbers (e.g. ,
the poloidal, toroidal, and radial quantum num-
bers) labeling the components A ' of the perturb-
ing field. Time dependence A -exp(-i~, t) is
assumed. In 1—=(I„l„l ~), each I takes on any
integral value. By definition, the ripple field con-
tains a single component a with (A.,= 0, while for
turbulence we assume a broad spectrum of modes
with ~, of order the drift frequency ~ . In both
cases, &u, «Q~ for all species s=i (ions), s=e
(thermal electrons), and s = r (runaway electrons);
so we can neglect effects from all gyroharmonics
except l =0. This implies that p, is conserved.

From a quasilinear analysis using the forms
(2) and (3), Kaufman has shown that D is given
by'

D(I ) = ~p.p l g-, (T, a) l' l l b(~. —1 n) . (4)

If interpreted literally, this expression is singu-
lar at each of the wave-particle resonances, and
zero elsewhere. However, the nonvanishing
Kolmogorov entropy vK

' in the stochastic state
and the consequent nonlinear mixing of orbits en-
sures that the resonances are smoothed, so that
the sum over 1 is to be interpreted as a suitable
integral as discussed in Ref. 1. The resulting
well-known quasilinear expression is valid for
autocorrelation time short compared to vK, so
that 7K does not appear explicitly in the final
answer. This regime is reasonable for most
turbulence levels of interest.

From Eq. (4), one reads off the resonance con-
dition ~,=1 ~ Q. The stochasticity criterion is
determined by considering the excursion AI- or
~Q-, in I or 0 space induced by a single compo-
nent (1, a) of H, with which a particle is nearly
resonant. Stochasticity ensues when this excur-
sion is large enough to move the particle to the
next resonance, i.e., when islands overlap.
From Hamilton's equations, one finds

~1-, =112g-, /~-, I, ~n-, =(85/81) ~1- (5)

where cv-, is the trapping frequency of a particle
in the potential well [-cos(1 ~ 6 —&u, t)] of the se-
lected perturbation component: ~- = 1 ~ AQ-.

1 1
'

! For turbulence, the particle resonantes with
successive modes & localized at radii ~, with
mode spacing 6-p,./m, where p, is the ion gyro-
radius and rn is the poloidal mode number, m
-p, /r. In this case, the stochasticity criterion
is

where hr , =(&r/-&p ~)bp ~& is the radial excursion
due to component (T, a).

For ripple, only a single component a is pres-
ent and the. resonance spacing 0 ~ Al ~ in the l ~
direction is given by the fundamental of the per-
turbation, Al ~=n, -10-20. This spacing is wider
than the spacing 0 b b,l„=Q„-for the l, direction.
Thus, a particle moves along a chain of succes-
sive resonances 0=1' ~ Q(r, ), where T'=1, Ta b

1+ 2b, ... , with b a unit vector picking out the
component l~ of 1. This yields the overlap crite-
rion for ripple,

I &(1 ~a-, /fl, )'=(~-, /a, )'. (7)

One sees from Eqs. (4) and (5) that the coupling
coefficients g- play a central role in both parts

1

of the theory. Expression (3) contains complete
information both about the particle trajectory
[through r(z) and v(z)] and the mode A'(r, &u, ),
and therefore permits as much realism to be put
into the theory as is desired. We write r =R+ p,
where R is the guiding-center position and p de-
scribes the gryomotion. Sufficiently far from the
separatrix, one can write R for both trapped and
passing particles in the form

R(5) = r(r, + r, cos6, ) + 6(8,6~+ 8, sin6„)
+ P(C + y, sin6, ) .

Here 00 0 for trapped particles and 0, =1 for
passing particles (thus describing the secular mo-
tion in 8 of the latter). Parameter r, is the ra-
dial excursion due to drifts: For trapped par-
ticles T'I @pc ' ', the banana width; for passing
particles x, -qp. Finally, 0, and y, describe both
drift motion normal to the field lines and in the
flux surface, and that part 6v

ll
which is oscilla-
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tory because of the pB well. When the latter effect dominates, one has qr, /0, =q(r, ) . For trapped par-
ticles, 0, is the poloidal angle at the turning point, and so for a typical particle is an appreciable frac-
tion of &: 6I, -1.5. For a passing particle, one may estimate 0, from the contribution due to motion
along field lines, 8, - 6v ii/v ii

and from the contribution due to perpendicular drifts, 0, -r,/r
Using Eq. (8) in Eq. (3), one finds approximately

g-= —eJo(k~)5~„((n,b+, + n A, )J, , (y,)+ —,'n, (0,Ao+ y,A, )[J,, e,(y, ) + J, , g +l(y,)]}. (9)

Here Ae denotes the quantity

Ae'(r, m, l ~) —= (2ll) ' fd0 fdic exp[ —i(m8+ l ~y) ]A o'(r, 0, q),
averaged over width r, about ~= r„y,is given
by y, ' = (m0, + l ~y,)'+(k„r,)', where k„is the
dominant radial wave number of A e.

One recovers the results of Refs. 1 and 2 by
considering passing particles (8, = 1) with the
drifts "turned off" ( 0l= q, = r, =

y,
= 0), taking k, p

= 0, and considering a turbulent spectrum. Then
there is a single term ~ =/, in the ~ sum in Eq.
(9), and l ~

= —n, so that P;=Q „.To examine
radial transport, we take the component D„„
=—(Br/Bp ~)'B~ ~ of the diffusion tensor, finding

D„„=Q (Rn,)'e, ,'v6(mn, —nn, ).
m, n

(10)

Here 8, o is the ratio of B„'(r,) (the magnitude of
the radial perturbation at the radius y, at which
it is a maximum) to the unperturbed field; this is
the measur e of perturbation strength used in Refs.
1 and 2. Recognizing that (6mA, nO~) =-fl~ '

&& 6(m/q(r) —n), one sees that Eq. (10) is the same
as the results of Refs. 1 and 2, multiplied by the
factor RB~ which converts from diffusion with
change in position along a field line to diffusion
with change in time.

To see how this result is modified by the new
effects, we find it useful to define a measure of
the effective perturbation strength by

l = loJO-(k. p, )Jl, 8,.(yl) -I (11)

The factor J,(k, p) is the modification of , /8, o

due to finite gyroradius. For turbulence, k ~
-p,. '. In addition, the runaway perpendicular en-
ergy, though much less than its parallel energy,
may be large enough' (Z l - 50 keV for T, = 1 keV,
n, = 10' cm ') that p„is an appreciable fraction
of p, For purposes of estimation, therefore, we
take kip-1, J,(k p)--', for s =i, r The fac. tor I'
= B„'(r„,)/B„'(r,) ( 1 measures the fact that the
radius r„,=~, at which a particle is resonant
with mode a is displaced, in the presence of
drifts, by a distance -r, from the radius z, at
which the mode has kII=0. If the radial depen-
dence were B„'(r)-exp[- (r —r, )'/w, '], one would

1(
I (I-./k. &')&,I, (12)

where L, is the shear length. This is the same
criterion as in Ref. 1 except that , replaces
S, o Thus, the perturbation strength S, o must
be about 13 times larger than the previous esti-
mates in order to satisfy (12), i.e., roughly 2.5

& 10 ' instead of 2x 10
For ripple, I'= Jo(kip) = 1 and y, =ny, =qn0,- 30. Because y, » 1, there is a spread due to

the particle's drift and ~vII motions, Al, -2y„in
the effective spectrum which a particle sees.
This spread permits the coherent perturbation to
induce stochastic motion. For passing particles
J,„(y,) =J,„(qn8,)- (8,) '"J,„(qn), where J, (v)- v

' . Stochasticity is thus most easily induced
on particles having 0,- 1, for which J,„(y,) is
near its maximum. Evaluating (7), one finds

1(
I
(q'Rl Per. ,)S,I.

For 8, —1, a perturbation strength S, o) ~ is
needed for stochasticity. Proposed ripple injec-
tion schemes' satisfy this.

have I' = exp[- (r,/so, ) ], strongly dependent on r, .
For s =i,x, we estimate I"-3.

Finally, the factor J,, e in Eq. (11) quantifies
the modification of the field-particle coupling due
to drifts and the modulation of v

II by the p.B well.
[This form is appropriate for passing particles;
a similar factor arising from the last line of Eq.
(9) enters for trapped particles. ] For turbulence
and s =i,y, one has y, -2 or 3, l, =m, so that for
passing particles J', , e, (y, ) =J,(y,)- 3. If we
combine this with the effects discussed in the pre-
Ceding paragraph, We eStimate that $,/Sl o™~.
Since 5-~'-Sl', one estimates that radial trans-
port can be reduced from the estimates of Refs.
1 and 2 by more than two orders of magnitude.
This may explain the anomalously long confine-
ment times of runaway electrons referred to in
Ref. 2.

Using Eq. (9), one may evaluate criterion (6):
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The strength and coherent nature of the ripple
perturbation make integration along unperturbed
trajectories untenable for trapped particles; so
we consider trapped particles only in turbulent
spectra. In this case, (7) is more difficult to
satisfy than (6), by a factor of roughly m'- 10 .
This requires a large turbulence level , ,&10 ',
a regime which we do not consider here. Be-
cause (7) is not satisfied, a particle makes only
a fraction of an oscillation in the cos(T 0) well
during the first half of its bounce period, then
retraces its motion during the return half. Math-
ematically, this is manifested by a factor J,
+J, =O (l, =0) which replaces the factor J,, ap-
pearing in , . We conclude that trapped elec-
trons should not be stochastic.

Finally, one may consider trapped ions in tur-
bulence. Here, since l ~QJu. ,™e«1, the reso-
nance condition requires that i~=to, /Q~=qe "'
- 12. Thus the terms J. .. in S, greatly reduce

~, by a factor on the order of (e"')'~, and one
expects no stochasticity for ions as well. The
physical mechanism here is that, for ~,-+, the
ions move too slowly to resonate with the waves.

We are grateful for informative discussions
with Allen Boozer, Carl Oberman, Russell Kuls-
rud, and Chris Barnes. This work was jointly
supported by the U. S. Department of Energy,
Contract No. EY-76-C-02-3073, and by the U. S.
Air Force Office of Scientific Research, Con-
tract No. F 44620-75-C-0037.

'J. A. Krommes, R. G. Kleva, and C. Oberman,
Princeton Plasma Physics Laboratory Report No.
PPPL-1889, 1978 (to be published); J. A. Krommes,
Prog. Theor. Phys. Suppl. 64, 187 (1978).

A. B. Rechester and M. N. Rosenbluth, Phys. Rgv.
Lett. 40, 88 (1978).

R. J. Goldston et aE. , Princeton Plasma Physics
Laboratory Report No. PPPL-1398, 1977 (unpublished).

These results were first reported by us in Proceed-
ings of the Sherwood Meeting on Theoretical Aspects
of Controlled Thermonuclear Research, 1979 (to be
published), Abstract No. SB89. At that same meeting,
effect (a} and a less general form of effect (b) were al-
so discussed by M. S. Chu and C. Chu, Abstract No.
2816.

5A. N. Kaufman, Phys. Fluids 15, 1068 (1972).
Russell Kulsrud, private communication.

Observation of Anomalous Heat Capacity in Liquid 3He near the Superfluid Transition

T. A. Alvesalo, T. Haavasoja, P. C. Main, ' M. T. Manninen, J. Hay, and Leila M. M. Behn
Loco TemPerature Laboratory, Helsinki University of Technology, SF-02150 Espoo 15, Finland

(Received 9 April 1979; revised manuscript received 20 September 1979)

The specific heat of liquid ~He from 0.8 to 20 mK at zero pressure has been measured.
Above - S mK the specific heat is linear in temperature and C/nRT =2.11 K ~, which is
SO@ less than the currently accepted value. Below S mK, C appears to deviate increas-
ingly from this relationship reaching, at the superfluid transition T = 1.04 mK, a value
9 jo in excess of the extrapolated linear specific heat. This Letter discusses the anomalous
behavior and its consequences with regard to the interpretation of our data.

There is an urgent need for precise specific-
heat data on liquid 'He in the vicinity of the super-
Quid transition over the whole pressure range.
Some of the most fundamental tests of the current
theories" on superQuidity in 'He and of the
Fermi-liquid theory can be carried out when ac-
curate specific -heat data become available.

Below the superQuid transition the specific heat
of liquid 'He has been measured earlier by sever-
al groups. ' ' The results, however, are not very
consistent because of problems associated with
thermometry and with background contributions
to the heat capacity. The most reliable data seem
to be those of Halperin et al.' along the melting

curve. At low pressures no accurate data of the
specific heat below 10 mK are available.

We report in this Letter measurements of the
specific heat of liquid 'He in the temperature
range 0.8-20 mK at zero pressure. In order to
be able to determine temperatures precisely we

have developed a thermometer based on the mag-
netic susceptibility of cerous magnesium nitrate,
diluted to 3%%uo molar solution in the corresponding
lanthanum salt (abbreviated as CLMN, cerium
diluted in lanthanum magnesium nitrate). "' In

addition, by using a method of analysis based on
the variation of the amount of liquid in the cell,
we have been able to perform an accurate deter-
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