
VOLUME 4$, NUMBER 20 PHYSICAL REVIEW LETTERS 12 NOVEMBER 1979

Stark Effect in Hydrogen: Dispersion Relation, Asymptotic Formulas, and
Calculation of the Ionization Rate via High-order Perturbation Theory
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By a generalization of the Herbst-Simon dispersion relation for hydrogen in. an electric
field, an expansion asymptotic in N for the perturbed energy coefficient E„„&N~ is ob-
tained from the formal asymptotic expansion (in the field strength E) for the ionization
rate. Perturbation-theory calculations of E»„~tN & to K- 150 confirm the formula. Via
reverse use of the dispersion relation, perturbation-theory values of E„&» &N& yield nu-
merical values for constants in the ionization-rate expansion that are tediuous to obtain
directly. Ionization rates so calculated compare favorably with values obtained by others.

One of the oldest quantum mechanical problems is the calculation of the perturbed energy and ioniza-
tion rate for hydrogen in the Stark effect. ' ' Renewed interest in the Stark effect has been stimulated
in part by recent experiments, such as by Koch, by Stebbings, ' and by Littman, Zimmerman, and
Keppner' on highly excited states of hydrogen and other atoms, and also in part by the discovery of
Herbst and Simon of a dispersion relation between the ground-state energy shift and ionization rate,
which implied a formula asymptotic in N for the Rayleigh-Schrodinger perturbed energy 8 "&.

This Letter's purpose is to discuss several aspects of the dispersion relation for excited states.
(i) We generalize the dispersion relation for any parabolic and magnetic quantum numbers n„n„and
m. (ii) With use of the formal asymptotic expansion in the field strength E for the ionization rate
I „„,we integrate the dispersion relation to get a formula for the energy, which when expanded in a
power series in F gives (iii) a formula, for the Rayleigh-Schrodinger energies E„,„, asymptotic in
N. Certain constants a„"'"' in the I"„„expansion are tedious to obtain analytically and carry over in-
to the formulas for E„„ t "~. (iv) We get the a„"~"2 numerically by matching the asymptotic formula to
values of E„„' ' obtained directly from high-order perturbation theory (N-150), and (v) we then use
the numerical a„"&"2 to calculate the ionization rate. Thus we calculate I'„,„, (indirectly) via ordinary
perturbation theory.

The generalized dispersion relation is

oo

E(n„n„m, E) =-
p

ImE(n„n„m, x), „)„,ImE(n„n„m, x)
x-F -i~ x+F

where

Np-1

E(n„n„m, F) =E "'[E(n„n2,m, F) — Q E„,„~"~F ],
Np

and E(n„n„m, E) is the outgoing-wave complex energy eigenvalue. Equation (1) may be "derived"
from Cauchy's formula, under the "assumptions" that there is an N, such that ~z "DE(n„n„m,z)

~

—0
as ~g~ —~, that E(n„n„m, z) has one branch cut running from +0 to +~ and a second running from —0
to —~, and that E(n„n„m, —z) =E (n„n„m, z). (More rigorous discussions appear in Ref. 8.)

We integrate Eq. (1) after using I'„,„, (F) = —2E"OImE(n„n„m, F), the formal asymptotic expan-
sion' "

I'„„(E)-[n n, t (n, +m)1] 'exp[3(n, —n, )](~n'E) '"' 'exp[-2/(Sn'F)]Q a~"&"2 (Sn'E/2)~, (2)
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and the exponential-type integral" E„(z)= f,"t "e "dt to obtain

E(n„n„m, E)- —(2!!n') '(z n')"'(a n'&) '

x (- [n, !(n, +m)!] 'exp[3(n, -n, )]5'""""

(4)

g„.„„~!=-[2!!n'n,.!(n, +m. )!] 'exp[3(n, -n, )]5'"~' "(3n'/2)"Qa, "!"& (2n„+m+N-k)'.

In Eqs. (1)-(5), m ~ 0; for m &0, one can use E (n„n„—m, E) =E (n„m„m, F) Whe. n n, = n„only
even-order E!"& are nonzero; when n, en„ the larger (2n;+m +N)! eventually dominates. The N! be-
havior is related to Borel summability. " The leading term of Eqs. (4) and (5) for the ground state
(note that a,"~"' -=1) was derived by Benassi, Grecchi, Harrell, and Simon. " The leading term of Eq.
(2) has been discovered or rediscovered at least three times. ' " Damburg and Kolosov" have given
formulas from which a,"1"2 and a2"1" can be inferred:

a,"~"' = 3 n~(n~+m —5) —x(n, +na ) —~ n!na —-!!-(ni+na)(m + 1) —~m' —+m —18

(5)

(5)

(7)f1100 32 4+ 325 3+ 7567 2+ 11019 + 7363
+2 M +1 18 +1 216 +1 324 1 648

xpa&"~"~ (2n, +m +N, k-) ' exp(- 2/3n'&)E, „.. .„„,(e "2/3n'F)
k

+[n, !(n, + m)!] 'exp[3(n, —n, )]5'"'" "'(-1)"'
xpa„"~"~~(2n, +m +N, —k) ' exp(2/3n'E)E&„. . .„!,„(2/3n'&)]'. (3

From the well-known asymptotic expansion" for E„(z) [or by expanding the denominators of Kq. (1) in

E/x] one obtains the power series

TABLE E. The expansion. coefficients ak" ~"~ for both
E „~ and 1 „(I'), obtained from Eqs. (6) and (7)
and by fitting Eqs. (4} and (5) with perturbation-theory

(8)E.gn)m

01 n2 K

Il 1' P
ak g Estimated error

0 0 0 0

1b

2C

-107/18

7363/648

-47. 0360 j: 0.0002

1 0 0 0

„b

2C

92. 65

-1350.

-130/9

33o53/324

-663.45

4450.

-34000.

0.2

j-. 20.

0. 1

20.
j-. 3000.

0 1 0 0

1b -142/9

28655/324 g 0.00005

-381.832

1455.7
-1 1700.

0.01

1.0
200.

'The errors given are a subjective estimate of the
authors based on the behavior of the extrapolation pro-
cedure.

"Value is from Eq. (6).
Value is from Eq. (7).

But even to obtain a2""' involved "rather cumber-
some" calculations, "and higher-order exact
ak "1"2 are not currently available. %e obtain
them numerically by extracting them from per-
turbation-theory values of E„„

%'e calculated perturbation theoretic E„,„,
for ¹ 150 by a modification of a method' previ-
ously applied to S& 25, based on separation in
parabolic coordinates. %e also calculated per-
turbation-t heoretic h«0' for ¹ 82 via the for-
malism of the SO(4, 2) Lie algebra. " " The use
of two independent methods on different comput-
ers permitted us to be rather certain of the ac-
curacy of the Eppp %e found agreement to
thirteen significant figures for all orders & 82.

From numerical values of E„„' ' calculated
by perturbation theory, the ak "1"2 can be ob-
tained by numerically fitting Eqs. (4) and (5) (cf.
Bender and Wu' ). The number of significant fig-
ures obtainable, however, falls rapidly as k in-
creases. For illustration, the values of a„'" (the
ground state), a~", and a~o", for k& 5, are list-
ed in Table I. It is harder to extract ak'" than
ak01 from E,«'"', because the terms in which
a,'" appears are roughly N e ' larger than those
in which a,"' appears. (a,"' could also be found
from a corresponding asymptotic formula for the
perturbed separation coefficient P„, '"'.)

In Table II, we have listed perturbation-theo-
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TABLE II. Comparison of E» ~&~& calculated by Rayleigh-Schrodinger perturbation theory and by
the asymptotic formula [Eqs. (4 and (5)] with use of the a&"i"2 given in Table I.

Order

E (N)
by asymptotic expansion to term k

n 1n2m

E(N) by
n1n2m

perturbation
theory

10

30

50

70

90

110

130

150

ground state n1-0, n2=0, m=o

-3.996474085 x 10 -1.8642732038

-9.714025167 x 10 -7.89732278837

-3.703729008 x 10 -3.27909263773

-4.85Q589779 x 10 -4, 449391052112

-2.000554940 x 10 -1.871123931154

-7. 111439484 x 10 -6.733615461197

-9.628490607 x 10 -9.194526355

-2.828678874 x 10 -2.717977245289

1o8

x 10

x 10

Q
1 1 2

«0"5"

x 10
10242

x 10289

-1.759326110

-7.897924293

-3.279135055

-4.449406966

-1.871126441

-6.733619562

-9, 194529249

-2.717977730

x 10

x 10

x 10

Q
1 I 2

154

x 10
10242

x. 1O"'

-1.945319605

-7.897811108

-3.279134470

-4.449406910

-1.871126438

-6.733619559

-9.194529248

-2.717977730

x 10

x 10

x 10

01 12

x 1O"'4

x 1O"'7

x 1O'4'

x 10

10

25

40

55

70

85

100

115

130

145

excited

-6.883958372 x

2. 186883327 x

-4.446779891 x

1.956524041 x

-4.580728565 x

2.420337907 x

-1.705384915 x

1.082850832 x

-4.706327872 x

1.118686686 x

state n1"-1, n2=0, m=o

-2.93144979518

10 1.136023758

10 -2.980690620

10 1.464777114

10 -3.651445906

10 2.008508550

10 -1.455619003

10 9.436075774

10 -4. 167086682

10 1.003083772

x 1017

x 1054

x 1O93

x 1O""
x 10178

x 10

„ 269

x 1O'"'
1Q3 3

„0412x 10

-1.594716773 x 1017

1.140689592 x 10

-2.982624298 x 10

1.465029693 x 10

-3.651685321 x 10

2.008567904 x 10

-1.455641404 x 10

9.436157909 x 10

-4. 167108856 x 10

1.003087198 x 10

-1.247119323 x 1018

1.139904838 x 10

-2.982601906 x 10

1.465028976 x 10
178-3.651685117 x 10

2.008567875 x 10

-1.455641398 x 10

9.436157893 x 10315

-4. 167108853 x 10

1.003087198 x 10

TABLE III. Asymptotic expansion for the ionization rate compared with accu-
rate numerical values, in atomic units.

n n1 n2 m

1 0 0 0

2 1 0 0

2 0 1 0

Field

strength

0.02351

0.03145

0.03942

0.04745

0.05556

0.04

0.06

0.08

0. 10

0.003

0.004

0.005

0.006

0.0025

0.0030

0.0035

0.0040

8.234 x 10

7. 194 x 10

4.588 x 10
-6

6669 x 10

4.428 x 10

5.78 x 10

9.96 x 10

1.20 x 10

5.09 x 10

3.61 x 10

2.81 x 10

1.45 x 10

1.94 x 10

1.66 x 10

2.49 x 10

829x10
1.09 x 10

Ionization rate

6.608 x 10
-11

5.857 x 10

3. 114 x 10
-6

4. 117 x 10

2.459 x 10

3.90 x 10

5. 19 x 10

4 67 x 10

1.28 x 10

2. 12 x 10

1.36 x 10

564x10-6

5.74 x 10

9 92 x 10

1.32 x 10

3.88 x 10

4. 45 x 10
-6

6.616 x 10

5.839 x 10

3.110 x 10
-6

4. &06 x &0

2. 442 x 10

3.89 x 10

5. 15 x 10

4.51 x 10

1.45 x 10

2. 12 x 10

1.36 x 10

5.73 x 10
-6

6.09 x 10

9.92 x 10

1.32 x 10

3.86 x 10

4. 44 x 10
-6

Ref .

11

20

20

21

20

I'( ) = Eq. (2), with k «¹1"(""~) is obtained from the references in last col-
umn,

Equation (2) with k-4. The k=5 term is no longer useful.
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retie values for E„„'"'along with asymptotic-
formula values with use of one, four, and six
terms in Eq. (5). The agreement is remarkable.

To show the utility of "perturbation-theory-ex-
tracted" a~"&"& for calculating ionization rates,
we list in Table IG values of l"ooo I zoo and I ohio

obtained from Eq. (2). The agreement with ac-
curate values obtained from numerical solu-
tions" ""is excellent. For the n =2 states,
the six-term results are significantly better than
the two-term results of Damburg and Kolosov. "

Thus we have demonstrated the agreement of
perturbation-theory E„,„'"'with the asymptotic
formula [Eqs. (4) and (5) obtained from the dis-
persion relation, and the practicality of extract-
ing the a,"i"2 from the perturbation-theory ener-
gies for subsequent calculation of ionization rates.
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