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The flux-conserving tokamak model suggested that rapid heating would yield equilibria
with high relative energy density (8= 2p/B°) while nonetheless allowing control over ¢, the
so-called safety factor for instability within the ideal magnetohydrodynamic plasma model.
In this study, we show that this is adequate to provide stability to 8 values of 10%, if
there is a superconducting metal shell in the vicinity of the plasma.

High values of 8 (>5%) are required for an eco-
nomically credible tokamak fusion reactor. Re-
cently, Sykes, Wesson, and Cox' have reported
stability calculations which predicted stable plas-
mas with a total average 8 8 =2/pd7//B%dt,B
=| BJ) of 12% for a D-shaped plasma with an as-
pect ratio (A) of 2.4. Toroidal wave numbers (z)
of 1, 2, and 3 were considered. Further investi-
gation of their high-8 equilibria using a model
which treats high instability mode number showed
that as n - « the critical B (8,) was only 6%, even
when a stabilizing, perfectly conducting shell was
assumed to be exactly at the surface of the plas-
ma, so that kink instabilities would not have been
seen.? Even more recent work® reports stability
studies which found stable plasmas with 8* val-
ues of 5% [B*=2(/p2d7)*/?/[B%dT; B* is larger for
a given plasma than 8)].

We report stable equilibria with 8,=10%. In our
case, the perfectly-conducting-shell assumption
was relaxed; we assumed a shell with a radius
20% larger than the plasma radius. A shell at
this distance could represent the effect of appro-
priately chosen first wall material around the
plasma. The shell inhibits but does not always
prevent kink instabilities. Flux-conserving toka-
mak* ® equilibria with quite high 8 values® have
now been analyzed with use of the computer code
ERATO, " which treats the plasma stability within
a linear ideal magnetohydrodynamic model, using
a finite-element energy-prinicple approach.

Reference equilibria were generated by solving
the usual equilibrium equation
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with boundary conditions ¢ =const on a D-shaped
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curve given by

R(6) =R, +a cos(0 +6 sing),
and

2(0) =oa sinf

with an elongation 0 =1.65, aspect ratio A =4.0,
minor radius ¢ =1.2 m, and 6 =0.5. The plasma
pressure is given by the polynomial

p=Bslaylc —1) +a,(x?-1) +3a,(x°~1)]
with
- Zp - lpaxis

X =
znbedge"' ZJ)axis ’

and o, == 0, ~a, to make p’ =0 at x =1, An initial
toroidal field function, F =RB,, is specified by

F?=F 5. +8TR B, = 1]p.

In the cases presented here, an “initial” equilib-
rium is computed with 8, =0.5, F 5 =2.65x10"
kG cm, and R,=500 cm. The values of a, and a,
are adjusted so that the resulting equilibria have
the specified values of q, (safety factor at the
magnetic axis) and ¢ (safety factor at the sur-
face). The higher values of 8, (=2/pd7/[B,?dr,
where B, is the poloidal component of B) are then
obtained by increasing the parameter 3, and re-
computing the equilibria, using a numerical meth-
od which conserves ¢(¥) and Yedge = Yaxis- The ref-
erence equilibria were then continuously scaled?®
to reduce 8 until stability was found at a critical
value B,. The values of 8, and ¢,¢, are approxi-
mately constant during the scaling, and so they
can be used as labels for the equilibria. We stud-
ied nine equilibria with 8,=1, 2,5, and 3.5, and
qs/q0=2, 3: 4.
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FIG. 1. Flux contours for the equilibria with the high-
est B, (=10%). The dashed line gives the location of the
conducting shell,

Figure 1 shows the flux contours for the equi-
libria with 8, =2.5 and ¢,/q,=2.0, which gave the
highest B,. A conducting shell was assumed to
lie at the location of the dashed line. The pres-
sure profiles for these equilibria were bell-
shaped as expected, while the current density pro-
file was peaked toward the outside, as is typical
of high-B flux-conserving tokamak equilibria.®
The g profiles increased monotonically from the
axis to the edge. They had a very flat character
but were otherwise unremarkable.

Figure 2 shows regions of stability for the n=1
mode as a function of ¢,. The curves define con-
stant-8, contours with values 1.0, 2.5, and 3.5.
On each curve, ¢,/q, varies from 4 at the bottom
to 2 at the top. Smaller g values correspond to
higher B,. Diagrams for » =2, 3, and 4 are simi-
lar. An optimum B, is observed to occur near a
value B,~A/2. The value of g, is approximately
the same along the constant-8, lines with larger
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FIG. 2. B vs g for n=1. The shaded region to the
left of each curve is stable.
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FIG. 8. Y vs B for n=1, 2, 3, and 4 using the equili-
bria with the highest B,.

values at higher B,.

The highest value found for 8, occurs at q,/q,
=2.0 and B,=2.5 forn =1, 2, 3, and 4. Figure 3
shows the B dependence of the instability growth
rate. There is a region of stability for » =1 at
very high 8 (>30%); this was not studied further
because higher-n modes were very unstable for
the cases treated and in the high-8 region ¢,<1
which would lead us to expect resistive instabili-
ties® which are not included in the present analy-
sis. Tearing modes are found experimentally to
limit discharges to g,= 1.

All the results shown are based on convergence
studies and extrapolation to infinitesimal numeri-
cal grid spacing. Figure 4 shows the growth rates
obtained using 30, 35, 40, and 45 grid points in
both the radial and poloidal directions. A poly-
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FIG. 4. The square of the growth rate vs N;™? for n
=4 (N, is the number of grid points). A polynomial fit
was used to find the growth rate as Ny — .
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FIG. 5. The square of the growth rate vs B using (1)
50 grid points (N, =50), (2) convergence study assum-
ing NG'2 convergence, and (3) convergence study using
a polynomial fit (convergence expansion).

nomial expansion in the grid spacing was used to
fit the curve; the 50-grid-point data served as a
check on the fitting procedure, and the growth
rates were then extrapolated to zero grid spacing
values. Figure 5 shows the dependence of the
squared growth rate on B, when N =50 grid points
is used, when quadratic convergence is assumed
(y*=a +b/N;?, where N, is the number of grid
points), and when a quartic convergence expan-
sion is used. As is seen, it is essential that a
complete convergence study be used.

Figure 6 shows the dependence of B, on toroidal
wave number. The point near » =« was obtained
from ballooning theory.'”’'* Direct evaluation at
n =« gives instability but inclusion of 1/% correc-
tions'' suggests that the unstable region lies only
at very high » values where validity of the mag-
netohydrodynamic theory is suspect because of
finite-gyroradius and kinetic effects. Applying

the correction

1 82’}/2 82‘)/2 1/2
2 __ 2

BTl i B @

where y, is the n =« growth rate, v’ is the local
shear, and yx, is the lower limit of integration in
computing the global shear (see Ref. 11), we find
a critical » of 150. This large 1/n correction
(which cancels the first-order term) occurs be-
cause v’ is nearly zero at the most unstable ¢
surface. We have applied corrections only to or-
der 1/n, and these are sufficiently large to cause
concern over the convergence of this expansion
for the cases treated. As a result, this usual ex-
pansion probably provides only a rough estimate
of the finite-n corrections. This point is under
further investigation.
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FIG. 6. B, vsn” 1,

The results for all the equilibria and all the
toroidal wave numbers have roughly the same
quantitative behavior as shown in Fig. 2 for n =1,
except for a progressively lower B—c asn is in-
creased. Thus, we can use the data to suggest a
scaling law—at least for the regime in the pres-
ent study. The results in Fig. 2 suggest a rela-
tion

B.=U,/AY"?/q,°A, (2)

where U (for n — «) is ~ 8.6 in this study, but
must be regarded as a function of all plasma pa-
rameters not varied in the present results. The
functional form in Eq. (2), however, does not in-
clude the optimum 8, behavior exhibited in Fig. 2.
The rough constancy of ¢,° (the critical safety
factor on axis) along each line in Fig. 2 suggests

9,°%=(1 =B, /A)" &)

Shafranov and Yurchenko'? found similar q,° de-
pendence from a Mercier criterion (localized
mode) study. The inclusion of Eq. (3) gives

B.={Uq(B,/A)P"*(1 -B,/A)} /q,%A. (4)

Equation (4) is an empirical representation of a
large set of results for equilibria with A =4.0.
Additional equilibria with different aspect ratios
are now being studied to ascertain the A depen-~
dence shown in Eq. (4).

It is our conclusion that stability requirements
for a D-shaped plasma with elongation of 1.65 al-
low stable average 8’s as high as 10%, even at a
high aspect ratio of 4, with ¢,/q,=2.0 and3,=3A.
Further studies of the dependence of U on the
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plasma shape, the elongation, and the proximity
of the conducting shell may lead to higher 3 val-
ues, while future analysis of resistive and kinetic
instabilities may reduce performance somewhat.
In any event, the present results lead us to be
significantly more encouraged than was the case
earlier.
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This paper describes examination of certain linear and nonlinear properties of macro-
scopic tearing modes driven by anomalous electron viscosity effects associated with
magnetic braiding. It is shown that strong linear growth of m =1, 2 tearing modes (re-
spectively proportional to p!/” and u“s) can occur for rather modest values of p. In the
nonlinear phase, the island width grows in time as #153, Some speculations regarding the
disruptive instability in tokamaks are also investigated.

In recent years, the idea that a tokamak may
suffer from broken magnetic surfaces and braid-
ed magnetic field lines has attracted a lot of
attention.’”® It is believed that magnetic braid-
ing could result if a number of helical magnetic
perturbations centered on different mode-rational
surfaces are simultaneously excited in the plas-
ma., The possible existence of braided field lines
has variously been considered as an important
candidate for explaining certain observed pheno-
mena in tokamaks, such as the anomalous elec-
tron heat transport,® aspects of disruptive in-
stability,’~* behavior of runaway electrons,® etc.

If field-line braiding arises because of quasi-
static, small-scale magnetic perturbations, it is
likely that it will lead not only to an anomalous
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transport of electron heat!? but also to an equally
strong transport of electron parallel momentum
across unperturbed magnetic surfaces.! This
means that Ohm’s law must be modified to in-
corporate an anomalous electron viscosity coeffi-
cient, which leads to a smoothing out of perpen-
dicular gradients of parallel current, i.e.,

Ey=nd,~ [I(m/nez)VfJ”; (1)

here 7 is the resistivity and the viscosity u is
approximately equal to x, the coefficient of anom-
alous perpendicular electron thermal conductivity
in a braided field."? This result is consistent
with a simple quasilinear estimate of the influ-
ence of microscopic magnetic perturbations on
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