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Structure functions of quenched off-critical binary mixtures are studied from a unified
viewpoint. Individual systems are characterized only by the properties of their mobilities.
The comparisons of theoretical predictions with experiments on. the kinetic Ising spin
model, binary fluid mixtures, and alloys yield with good agreement.

The phase separation of a binary mixture pro-
ceeds accompanied by cluster coagulations. A

state where clusters are formed is represented
by a local minimum of the free energy at which
the first derivative of the free energy should van-
ish. The free energy thus contains an infinitely
large number of local minima characterized by
cluster sizes and cluster configurations. If the
phase separation of a quenched binary mixture
proceeds into a completely phase-separated state
only through the local minima of the free energy,
then the restoring forces acting on fluctuations
with wave numbers smaller than the inverse clus-
ter diameter should always be vanishingly small.
For off-critical quenchings two further simplifi-
cations can be found. First, the fluctuations in-
side clusters can be neglected and therefore the
restoring forces acting on fluctuations with wave
numbers larger than the inverse cluster diame-
ter are extremely large. Second, the length scale
is the average cluster diameter R, only. There-
fore, the structure function S,(t) may be scaled
as

s„(t)=R"s(kz),

where d is the dimensionality. On the basis of
these ideas we have derived the equation of the
motion for S,(t) in the case of off-critical quench-

ing' and obtained a good agreement with comput-
er simulations on the spin-exchange kinetic Ising
spin model. "Nevertheless, there remains an

ambiguity in determining the R dependence of the
mobility, i.e. , the renormalization of the mobil-
ity is not yet considered. This is the reason why
our previous discussion failed to explain other
cases, e.g. , the off-critical quenching of a bina-
ry fluid mixture. ~ In this short communication
the renormalization of the mobility will be con-
sidered with the help of the cluster dynamics due
to Binder and Stauffer. '

Consider the following Langevin-type equation
for the composition fluctuation 7)„(t), which is the
Fourier component of the local composition g(t, r):

(g, (t)g, *(s)),= 2k, TM(t)k 5(t —s),
where M(t) is the renormalized mobility, k, is
Boltzmann's constant, T is the temperature, B
is a constant, and (), means the ensemble aver-
age in a state observed. Then the damping coef-
ficient r„(t) may be approximately given, for the
reason mentioned above, by

[k TM(t)k ] 'r (t)= y '(t) =B 'R "(kR) ". (4)
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The meaning oi' the exponent (d + 1) will be dis-
cussed below. The damping coefficient I', (t) is
related to the strength of the fluctuating force,
2kTM(t)k', through the generalized fluctuation-
dissipation theorem" which can be transformed
into the equation of motion for the structure func-
tion S»(t):

, S—„(t)= 2k, TM (t)k'[1 —q„-'(t)S„(t)],

s, (t) =(Iq„(t)I'&.. (5)

Here, )t„(t) corresponds to the structure function
in a stationary state where the cluster diameter
R is fixed to be constant. Thus y»(t) in (4) must
satisfy the same scaling property as S„(t) in (1).
The exponent —(d+ 1) is so chosen that the asymp-
totic solution S»~ y» for large wave numbers (kR
&m) may give the correct pair correlation func-
tion, i.e. , (q(t, r)q(t, 0)),~R 'r+constant, for
small z.'

The dependence of R on t is determined so that
(1) should be the solution of (5). Thus R must
satisfy the equation;

en by (4) is partially renormalized in the sense
that the flatness of the free energy due to the
cluster formations is already taken into account,
the mobility I is not yet renormalized if we put
it equal to a constant.

Let us here separate the mobility M into two
parts, i.e. , the bare mobility lV&p and the correc-
tion M, due to the cluster formation:

M(t) =M, +M, (t). (8)

k BTM, (t) = &m 'R "D. (9')

We shall evaluate the R dependence of M, (t) on
the basis of the cluster kinetics. I et D denote
the cluster diffusivity which is the diffusion coef-
ficient of the center of mass of a cluster. Then,
M, (t), which is the mobility originating from the
collective movement of atoms transported by a
cluster of the volume R", can be found to be

kBTM, (t) =R &.

Equation (9) can be also found in another way;
The cluster diffusivity D may be identified with
I'»~'~k '=k~TM, (t)y»

' at k=vR

dR /dt ~R M(t). (6)

R ~k '~ t', a'= (d+2) ', (7)

w here k is the wave number at which S„(t) has
its maximum. Equation (7) agrees with the com-
puter simulation on the spin-exchange kinetic Is-
ing model at the late stage of coagulation for off-
critical quenching. '' However, there is no sure
reason why we may choose a constant mobility.
In fact, a' = (d + 2) ' does not agree with that of
the binary fluid mixture for off-critical quench-
ing. 4 Although the damping coefficient I', (t) giv-

So far the discussion does not rest on any particu-
lar models. If we put M equal to a constant, then

(6) gives

This rough estimation thus gives

d n (t) =G(bl))+f (t), (G((n})f *( )), = o, (11)

(f,(t)f„*(s)),= 2k, ,TM,k'6(t —s), (12)

where G is a nonlinear functional of (q), which
is suitably chosen in each problem. Such nonlin-
ear equations as (11) are studied for critical
quenchings by transforming them into Fokker-
planck equations. " From (2), (11), and (3) we
obtain

(10)

Here we shall remark on the origin of My I et
q»(t) obey the nonlinear equation

(13)

(14)

Then, P =0 for the off-critical Ising spin model
and f = 1-d for the off-critical fluid. We can
then find from (6) that a' in (7) is replaced by

(15)

M, (t) = (1/k Tk') / ([G(t) + I'„(t)q,(t)][G (~) + I"„(7)q„(v)]*),dv.

We shall not, however, deal with (13) in this com-
munication. Binder and Stauffer evaluated the is dominant for the fluid. Let M be written in
cluster diffusivities of various systems. Using the large-R limit as
their estimations for D, we find that 14, ~R for
the off-critical kinetic Ising spin model and M,

Mt =XRt
~R" ' for the off-critical binary fluid mixture.
Thus, in the large-R limit we find Ai p»M y for
the kinetic Ising model and Mp«M, for the fluid.
Thus there is no effect of the renormalization of
M for the kinetic Ising spin model in the large-
R limit, while the effect of the renormalization
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computer simulations on the spin-exchange kinet-
ic Ising model" quenched at T =0.5ST,. We can
then find that M =M, is a good approximation,
since we used the unit from I anger, Bar -on, and
Miller, ' which corresponds to M =M, . Further-
more, for the three-dimensional system of one-
to-one composition, one may evaluate S„(t)= y, (t)
for large wave numbers (k&k ) as S, =24mR 'k 4

= 24k k ~, by assuming that clusters are simple
curves with R as the one side length. Here we
have put k =pR '. This estimation is in good
agreement with that observed in the computer
simulation' at T =0.59I„ i.e. , S~=25k k . No-
tice that this estimation also agrees well with

y, (t) = m'k k which is given with the use of (10).
Thus, for the spin-exchange kinetic Ising model,
even constants A in (14) and B in (4) may be de-
termined if k (t) is determined self-consistently.
In Fig. 1, S,(t) calculated by (5) is compared with
the scattering intensity from a binary fluid mix-
ture for the off-critical quenching. Two con-
stants A and B are suitably chosen. The discrep-
ancy between the theory and experiment at inter-
mediate times corresponding to k (t) =k is due to
the over simplification of )t„. In Fig. 2, S,(t) giv-
en by (5) is compared with the recent experiment
on a quenched Au-Pt alloy. ' The constants A and
B are suitably chosen. We have put r„=4, which
gives a' = &. However, the experimentally ob-
served value for a' changes with time. Further-
more, the scaling property (1) seems not to be
satisfied. But we consider that the experimental-

ly observed cluster diameter R at a late stage of
the coagulation would recover more rapid growth
such as R ~t'", together with the scaling proper-
ty (1). In Fig. 3 we compare S,(t) at various in-
stants with experiments corresponding to Figs. 1
and 2 together with the computer simulation on
the spin-exchange kinetic Ising model. ' We note
that the theoretical profile of S,(t) does not de-
pend on P, A, and B. For instance, if we change
the independent variable from t to R, then we ob-
tain a f-independent equation for S,(t).
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Measurements of the normal fluid density of He-B from a high-Q oscillator are reported
which cover the pressure rA&ge 2 to 29 bars. These results indicate that to the accuracy
of' the measurements, 2~/0 in temperature and 4% in density, all pressure dependence can
be accounted for by a standard weak-coupling Fermi-liquid correction. The resulting
stripped normal fluid density, however, displays a significant strong-coupling contribu-
tion which conflicts with theory and the interpretation of several other experiments.

In many respects the hydrodynamics of liquid
'He-B can be viewed in terms of a two-fluid mod-
el quantitatively similar to the BCS theory for s-
wave superconductivity. Though quasiparticle
pairing occurs in a p-wave state, the energy gap
is isotropic unlike the situation for 'He-A. How-

ever, complications arise even for 'He-B be-
cause the pairing phenomenon itself alters the
interaction responsible for the pairing. Current
theoretical interest is directed towards under-
standing this so-called strong-coupling effect. ' '
The superfluid density, or equivalently the den-
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