VOLUME 43, NUMBER 18

PHYSICAL REVIEW LETTERS

29 OCTOBER 1979

ture [see P. M, Morse and H, Feshbach, Methods of
Theoretical Physics (McGraw-Hill, New York, 1953),
p. 1294], For a ring angular velocity, é, the circula-
tion contribution arising from the orifice is —V/2a
where V = (1-x)AR§ is the volume rate of flow through
the orifice. Here we neglect the velocity of the parti-
tion, RO, as compared to the mean flow velocity, & =
=V/ma?®, through the orifice. The contribution to the
circulation from flow in the rest of the ring is x21rR2l§.
The requirement of zero total circulation leads to the
given expression.
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[J. Low Temp. Phys. 31, 457 (1978)] and A. Fetter [in
Quantum Statistics and the Many Body Problem, edited
by S. Trickey, W, Kirk, and J. W, Duffy (Plenum, New
York, 1977), p. 127] predict that the order parameter,

A, is suppressed, leading to a depression in p; which
is proportional to the square of the impressed super-
fluid velocity v . The resulting increase in the period
of the oscillator is smaller than our resolution at a
velocity of 5 mm/sec corresponding to 6.
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Exact calculations of the angular deceleration of superfluid vortex arrays show momen-
tary speedups in the angular velocity caused by coherent, multiple vortex loss at the
boundary. The existence and shape of the speedups depend on the vortex friction, the de-
celeration rate, and the pattern symmetry. The phenomenon resembles, in several ways,

that observed in pulsars.

The angular deceleration (“spin-down’) of a

superfluid has gained much interest from the iden-

tification of pulsars as neutron stars and the well
founded prediction that the latter consist primar-
ily of a neutron superfluid."® In particular, the
abrupt changes in the rotation period, variously

known as jumps, speedups, or anomalies (“glitch-

es”), possibly originate in superfluid hydrody-
namic processes.®”® Continuous vorticity models
have not provided a mechanism for rotational
anomalies although various vibration™® and relax-
ation® phenomena have been studied. The new
results of this Letter concern basic dynamical
characteristics of discrete vortex arrays during
unconstrained spin-down. These characteristics
obviously invite comparison with those of pulsars
although only a relatively small number of vor-
tices are used and only the grossest pulsar fea-
tures are mirrored in the theoretical system.

I consider a rotating, two-component super-
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fluid in which the vortices have singly-quantized
circulation k and are conserved except for pos-
sible annihilation at an exterior, circular bound-
ary. To be consistent with the pulsar system,

I assume the effective normal fluid is locked
rigidly to the boundary (because of the strong
magnetic field in neutron stars?). Also, the
vortices are assumed to be unpinned at the bound-
ary (a result of either the loss of °P, superfluidity
there or the existence of a boundary layer).®
Thermodynamic processes and any difference
between vortex dynamics in a sphere and a cy-
linder are disregarded for convenience.

The friction accompanying relative motion of
the vortices and the normal fluid can be expressed
as an angle 6 relating the velocities of the kth
vortex, 1,, of the local superfluid, v, ,, and of the
local normal fluid, v,,. In complex notation, ap-
propriate for rectilinear vortices, this expres-
sion is'®

(1)
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where v’ is the transverse component of friction
which, for convenience, is taken to be zero. In
the normal-fluid frame, 6 is the angle between
the vortex and superfluid velocities; its physical
extremes are 0° (no friction, vortices move with
superfluid) and 90° (maximum friction, vortices
locked to normal fluid).

In a nonrotating frame, the superfluid velocity
v, ,, at the vortex position z, is due to the other
vortices and all the images,'* so that

5 i 5 (2)
= — - —
Cak Li#k ] i1 Ze=1/2;°

and the normal-fluid velocity, for solid-body ro-
tation, is justv, ,=iwz,. Iuse dimensionless
angular velocity w=27R2Q/k, and time 7= kt/
27R2, and normalize z, to the boundary radius R.

The calculations begin with an initial vortex
pattern chosen from the Los Alamos Catalog
(LAC).'2 With use of the above equations, the
pattern is first put in equilibrium at a starting
w and then, after assigning inertia to the bound-
ary and normal fluid, spun down according to
some fixed prescription for the external decel-
erating torque. The torque acts on the boundary,
which is coupled to the other components as
described above. The resulting decrease in w,
a dependent variable, causes the pattern to grow
beyond its stability size and lose vortices at the
boundary. ‘

The dynamics of the system shows distinctive
behavior. For larger average decelerations,
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FIG. 1. Angular velocity vs time (dimensionless) for
the first speedup event during the deceleration of LAC
37y, with ® =—=1.5, 6=45°. Six vortices are lost. The
Q=1-Aw/Awy=0.41,

&= (dw/dT), and larger vortex friction angles 6,
groups of vortices are lost simultaneously at
comparable intervals of w. At smaller values of
® or 6, it is common for the vortices to leave
individually in an irregular manner but at an av-
erage rate proportional to @; this will be called
incoherent loss (IL). Such IL, if any, typically
sets in after one or more instances of the co-
herent vortex loss, which results in a pronounced
speedup event in the angular velocity as shown

in Fig. 1. The number of vortices lost per event
also depends on the symmetry of the initial pat-
tern, with those of higher symmetry losing more.
The influence of the initial pattern extends through
most of the decay. For example, the intermedi-
ate patterns that occur during the spin-down of
LAC 61, are quite different from those that occur
from LAC 50,. From the start, unsymmetric
initial patterns lose vortices by the IL mode;

for example, at @=-1, pattern LAC 37, loses
only coherent groups but LAC 37, shows only IL.
The angular momemtum of the superfluid abruptly
drops when vortices are lost and then recovers
to an intermediate level as shown in Fig. 2. This
recovery is caused by both the consolidation of
the new pattern and its contraction in response to
the transiently higher value of w at the peak of
the speedup. The contraction increases the vor-
tex angular momentum and hence must decrease
w, to conserve the total angular momentum. The
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FIG. 2. Angular momentum, in units of 1pxR?, for
the event in Fig., 1. The continuum approximation,
(pg/pPIN[1—(N—1)/2w], of the vortex angular momen-
tum fails completely at the jump. Here, pg/p=0.5.
Not shown is the angular momentum of the boundary,
which is, arbitrarily, twice that of the normal compo-
nent,
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vortex energy has a similar recovery but, unlike
the angular momentum, most of its net change
is impulsively dissipated rather than reversibly
transferred to the nonsuperfluid components.

It is interesting to compare the above with pul-
sar jump phenomena:

(1) Both the vortex and pulsar speedups are
always positive with a fast rise time 7, followed
by a slower decay 7, to an offset and a longer in-
terval 7, between events, i.e., 7, <T,<7;. In
the vortex system, 7, is characteristic of vortex

" motion dominated by image interactions, 7, is
the pattern equilibration time (recovery), and
T, is proportional to & 71,

(2) Although hundreds of pulsars have been dis-
covered, jumps have been seen mostly in the
youngest, those with the highest w, largest de-
celeration @, and perhaps, the highest temper-
ature (and vortex friction).’® As noted above, it
is important for @ and 6 to be sufficiently large
if coherent rather than incoherent loss is to oc-
cur in the vortex system. The analog of IL in
pulsars could not cause speedups because the
unit change in vortex angular momentum is too
small. (However, it could produce noise in the
timing of the pulsar signals.) Figure 3 shows a
spin-down of LAC 61, with torque proportional
to w?, After six pronounced speedups, the IL
mode begins when ® becomes sufficiently small.
The IL mode could also have been induced by
decreasing 6, even with constant torque.
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FIG. 3. Deceleration of LAC 61; with decreasing
torque. After six events (losing six vortices each) the
incoherent decay begins (irregular loss of individual
vortices). The function w(7) for 7>9.2 is successively
returned to the origin and displaced upward but retains
its scale. 6=30°.
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(3) A most puzzling feature of pulsar period
jumps has been the difference in the shape pa-
rameter @ =1 - Aw,/Aw, between the Crab and
Vela events (see Fig. 1). The puzzle arises from
relating @ to the system’s properties. If the
system consists of loosly coupled rigid and liquid
components having angular momenta /I, and I;,
and if the jump is caused by a small change in
1., then, by a simple argument based on conser-
vation of angular momentum," @ =I, /(I,+I;). The
fact® that typical Q.= 0.9 and Qv ;,~ 0.15 implies,
by this relation, a strange and enormous differ-
ence in structure between the two pulsars which
are not otherwise expected to be so different.

For the vortex system, the puzzle disappears
because the above relation for @ is not applicable.
The vortex angular momentum is not proportional
to w and the source of the speedup is a vortex in-
stability. In this case, conservation of angular
momentum gives the estimate

Q=[(L-€)I,+L/Aw,] /I, +1,), (3)

where I, is the moment of inertia of the normal
fluid, L is the amount of vortex angular momen-
tum change during the recovery period 7,, and

€ is the fraction of normal fluid effectively locked
to the crust by viscosity during 7,. (Elsewhere
it is assumed € =1.) The effective moment of
inertia of the superfluid, the dominant star com-
ponent, does not appear in Eq. (3). As a result,
vortex systems of identical size and composition
can exhibit speedups with widely different @ val-
ues due to the variability of L/Aw,. In particular,
smaller @ gives smaller @ as shown qualitatively
in Fig. 3 where the Q’s steadily decrease until
the IL mode begins. Also, reducing the vortex
friction angle 6 results in lower @ as shown in
Fig. 4. To some extent this is due to longer re-
laxation times at smaller 6 so that in a fixed
time period the @ appears smaller. Both of
these vortex mechanisms are consistent with

the pulsar observations: ®cup> @y, and the
vortex friction in the younger and, presumably,
hotter Crab pulsar is, plausibly, greater than in
the Vela.

Because of the disparity between the number
of vortices used in the calculations (< 61) and
the number in the Crab or Vela pulsar (=~ 10'7),
the calculated speedups represent the loss of
only a fraction (~%) of an outer ring compared
with the equivalent loss of many rings (~ 10%) in
these pulsars, assuming their vortices are lost
only during the observed jumps. Vortex dynam-
ics, if it is to explain pulsar jumps, must either
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FIG. 4. Dependence of the shape parameter @ on the
vortex friction angle 6 for the first event LAC 37;. Tri-
angles: ®=-—1.5. Circles: & =—2. For 6 =<30° inco-
herent loss begins to occur in the later stages of the
deceleration (at constant torque).

cause the abrupt loss of many rings or trigger
other mechanisms that amplify the consequences
of smaller vortex loss. This may require adding
to the dynamics new elements such as thermal
processes,' the variation of vortex friction over
space and time, and pinned vorticity ('S, super-
fluid) within the crust.’® However, with respect
to the total vortex number the relative fractions
lost are reversed, of order # for the events
shown here and 10°* for the pulsars. It is favor-
able that the larger speedups came from patterns
having pronounced triangular symmetry, the dom-
inating symmetry of much larger patterns.
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Note added.— L. V. Kiknadze and Yu. G. Mama-
ladze, Zh. Eksp. Teor. Fiz. 75, 607 (1978) [Sov.
Phys. JETP 48, 305 (1978)] consider some of
the phenomerfé,— discussed here and show results
from the deceleration of LAC 19,. I am grateful

to Dr. Mamaladze for bringing this to my atten-
tion,
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