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ture [see P. M. Morse and H. Fesbbach, Methods of
Theoretical Physics (McGraw-Hill, New York, 1953),
p. 1294]. For a ring angular velocity, 0, the circula-
tion contribution arising from the orifice is —V/2a
where U = (1-y)ADO is the volUme rate of flow through
the orifice. Here we neglect the velocity of the parti-
tion, RO, as compared to the mean flow velocity, v =

=V/na, through the orifice. The contribution to the
circulation from flow in the rest of the ring is y2~R20.
The requirement of zero total circulation leads to the
given expression,

3In the presence of flow, D. Vollhardt and K. Maki
[J. Low Temp. Phys. 31, 457 (1978)] and A. Fetter fin
Quantum statistics and the Many Body Problem, edited
by S. Trickey, W. Kirk, and J.W. Duffy (Plenum, New
York, 1977), p. 127] predict that the order parameter,

g, is suppressed, leading to a depression in p which
is proportional to the square of the impressed super-
fluid velocity v . The resulting in"rease in the period
of the oscillator is smaller than our resolution at a
velocity of 5 mm/sec corresponding to 6
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Exact calculations of the angular deceleration of superfluid vortex arrays show momen-
tary speedups in the angular velocity caused by coherent, multiple vortex loss at the
boundary. The existence and shape of the speedups depend on the vortex friction, the de-
celeration rate, and the pattern symmetry. The phenomenon resembles, in several ways,
that observed in pulsars.

The angular deceleration ("spin-down") of a
superfluid has gained much interest from the iden-
tification of pulsars as neutron stars and the well-
founded prediction that the latter consist primar-
ily of a neutron superfluid. " In particular, the
abrupt changes in the rotation period, variously
known as jumps, speedups, or anomalies ("glitch-
es"), possibly originate in superfluid hydrody-
namic processes. ' ' Continuous vorticity models
have not provided a mechanism for rotational
anomalies although various vibration" and relax-
ation' phenomena have been studied. The new
results of this Letter concern basic dynamical
characteristics of discrete vortex arrays during
unconstrained spin-down. These characteristics
obviously invite comparison with those of pulsars,
although only a relatively small number of vor-
tices are used and only the grossest pulsar fea-
tures are mirrored in the theoretical system.

I consider a rotating, two-component super-

fluid in which the vortices have singly-quantized
circulation ~ and are conserved except for pos-
sible annihilation at an exterior, circular bound-
ary. To be consistent with the pulsar system,
I assume the effective normal fluid is locked
rigidly to the boundary (because of the strong
magnetic field in neutron stars"). Also, the
vortices are assumed to be unpinned at the bound-
ary (a result of either the loss of P, superfluidity
there or the existence of a boundary layer). '
Thermodynamic processes and any difference
between vortex dynamics in a sphere and a cy-
linder are disregarded for convenience.

The friction accompanying relative motion of
the vortices and the normal fluid can be expressed
as an angle 0 relating the velocities of the kth
vortex, v„, of the local superfluid, ~, „and of the
local normal fluid, ~„„. In complex notation, ap-
propriate for rectilinear vortices, this expres-
sion is"

pf
v„=e ' [v, ,cos0+iv„„sin&+, (v, „—v„,) cos8],

S
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where v' is the transverse component of friction
which, for convenience, is taken to be zero. In
the normal-fluid frame, ~ is the angle between
the vortex and superfluid velocities; its physical
extremes are 0 (no friction, vortices move with
superfluid) and 90' (maximum friction, vortices
locked to normal fluid).

In a nonrotating frame, the superfluid velocity
~, , at the vortex position z~ is due to the other
vortices and all the images, "so that

and the normal-fluid velocity, for solid-body ro-
tation, is just ~„„=i~z„. I use dimensionless
angular velocity ~ = 2wRkQ/x, and time 7 = vt/
2'', and normalize z„ to the boundary radius R.

The calculations begin with an initial vortex
pattern chosen from the Los Alamos Catalog
(LAC)." With use of the above equations, the
pattern is first put in equilibrium at a starting
~ and then, after assigning inertia to the bound-

ary and normal fluid, spun down according to
some fixed prescription for the external decel-
erating torque. The torque acts on the boundary,
which is coupled to the other components as
described above. The resulting decrease in ~,
a dependent variable, causes the pattern to grow
beyond its stability size and lose vortices at the
boundary.

The dynamics of the system shows distinctive
behavior. For larger average decelerations,

v=- (d&u/dT), and larger vortex friction angles 8,
groups of vortices are lost simultaneously at
comparable intervals of w. At smaller values of
(d or 0, it is common for the vortices to leave
individually in an irregular manner but at an av-
erage rate proportional to &; this will be called
incoherent loss (IL). Such IL, if any, typically
sets in after one or more instances of the co-
herent vortex loss, which results in a pronounced
speedup event in the angular velocity as shown

in Fig. 1. The number of vortices lost per event
also depends on the symmetry of the initial pat-
tern, with those of higher symmetry losing more.
The influence of the initial pattern extends through
most of the decay. For example, the intermedi-
ate patterns that occur during the spin-down of

LAC 61y are quite diff erent from those that occur
from LAC 50,. From the start, unsymmetric
initial patterns lose vortices by the IL mode;
for example, at &=-1, pattern LAC 37, loses
only coherent groups but LAC 3'73 shows only IL.
The angular momemtum of the superfluid abruptly
drops when vortices are lost and then recovers
to an intermediate level as shown in Fig. 2. This
recovery is caused by boih the consolidation of

the new pattern and its contraction in response to
the transiently higher value of ~ at the peak of
the speedup. The contraction increases the vor-
tex angular momentum and hence must decrease
~, to conserve the total angular momentum. The
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FIG. 1. Angular velocity vs time (dimensionless) for
the first speedup event during the deceleration of LAC

37&, with ~ = —1.5, 9=45 . Six vortices are lost. The

q = &- ~~,/'~~, = 0.4i.

FIG. 2. Angular momentum, in units of —,'pKR, for
the event in Fig. 1. The continuum approximation,
(p /p)N[1 —(N 1)/2m], of the v—ortex angular momen-
tum fails completely at the jump. Here, p~//p = 0.5.
Not shown is the angular momentum of the boundary,
which is, arbitrarily, twice that of the normal compo-
nent.
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to Dr. Mamaladze for bringing this to my atten-
tion.
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FIG. 4. Dependence of the shape parameter Q on the
vortex friction angle 0 for the first event LAC 87~. Tri-
angles: ~ = —1.5. Circles: ~ = —2. For 8- 80' inco-
herent loss begins to occur in the later stages of the
deceleration (at constant torque),

cause the abrupt loss of many rings or trigger
other mechanisms that amplify the consequences
of smaller vortex loss. This may require adding
to the dynamics new elements such as thermal
processes, " the variation of vortex friction over
space and time, and pinned vorticity ('S, super-
fluid) within the crust. " However, with respect
to the total vortex number the relative fractions
lost are reversed, of order —,

' for the events
shown here and 10 ' for the pulsars. It is favor-
able that the larger speedups came from patterns
having pronounced triangular symmetry, the dom-
inating symmetry of much larger patterns.

I wish to thank David Pines and Madeleine Soy-
eur for helpful discussion and information on
neutron-star matter. This work was performed
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Energy.

Note added. —L. V. Kiknadze and Yu. G. Mama-
ladze, Zh. Eksp. Teor. Fiz. 75, 607 (1978) [Sov.
Phys. JETP 48, 305 (1978)] consider some of
the phenomena discussed here and show results
from the deceleration of LAC 19,. I am grateful
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