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This Letter investigates the conditions for Bose-Einstein condensation of an ideal
relativistic Bose gas in different spatial dimensions. It is shown that the thermodynam-
ical properties of the critical particle density are qualitatively different for massive
and massless relativistic Bose particles.

Our aim in this work is to show that a relativis-
tic Bose gas leads to a different dimensional de-
pendence of the Bose-Einstein condensation (BEC)
in the cases of massive and massless Bosons.
The effect of dimensionality has been previously
investigated' ' for nonrelativistic thermodynami-
cal systems possessing an energy spectrum of
the form

d

Z= Pc,p,.",

where g,. are given volume-dependent factors, d
is the number of spatial dimensions, p& are the
components of the momentum in the direction i,
and a is a free parameter characterizing an ex-
ternal field. The case o. =2 corresponds to the
nonrelativistic ideal gas, whereas e =1 describes
a system which is composed of harmonic oscil-
lators. It was also shown' that the relevant quan-
tity which determines whether or not the system
can condense is given by d/ct; only for d/o. & l
can the BEC take place. Furthermore, the criti-
cal properties of the nonrelativistic BEC as a

cooperative phase transition have been exactly
calculated4 for arbitrary d; the importance of
the continuous values of d is related to the pa-
rameter c =4 —d in renormalization-group calcu-
lations. "

Now we shall consider a system of relativistic
bosons, each with a rest mass m and the rela-
tivistic energy spectrum (c =h = l)

E = (m'+ ( P P)"'

contained in a d-dimensional spatial volume Vd.
The d-dimensional invariant phase-space meas-
ure' «s(0) is written as

y (&)pP

(27()" p,

which is readily seen to be the generalization of
the relativistic ideal gas' in the usual covariant
for mulation' for three spatial dimensions. From
this expression we may obtain the thermodynami-
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cal potential 0 as the logarithm of the grand par-
tition function' in the form

V„=
(2 '), f d"p 1n(1-Ae az) —in(], —Ae™),(4)

where P is the inverse temperature and A is the
relativistic fugacity with a direct relation to the
chemical potential p by A =exp(Pp) and to the usu-
al nonrelativistic fugacity z through A =z exp(Pm).
The presence of zero-momentum states leads to

!

the term ln(1-Ae 8); its contribution becomes

important as A approaches exp(Pm). This term
gives rise to the well-known phenomenon of BEC
for a nonrelativistic Bose gas in d dimensions
with z-1. For the usual nonrelativistic system
it is furthermore known that for all dimensions
d) 2 and at all finite densities below a critical
temperature the zero-momentum state contains
a certain finite fraction of the particles.

The aim of our present investigation of the BEC
is basically twofold: (1) the numerical study of
lower dimensions and the determination of the
conditions for which the condensation disappears
and (2) the determination of limit of large dimen-
sions. We assume a spherically symmetrical sys-
tem so that Eq. (4) becomes

(&-2)/2
—pQ = )„, f dpp 1ln(1-Ae 8

) —ln(1-Ae "8). (5)

The evaluation of this integral is carried out through an expansion with use of the integral representa-
tion for the modified Bessel functions of the second kind" in the form

(6)

where x, t, and v are positive real numbers and I' is the gamma function. Eq. (5) then takes the form
I/' (d -3)/2(2~/P)(d+ 1)/2 Ak 1Q k(d+1)/2 K(d+1)/2(km p) —ln(1 —Ae )

Wg A=y
(7)

We obtain the average particle number density from the usual relation

)1 = —(A/V„) s(PQ)/aA

(d - 3)/2 2(d 1)/2

&d(~, P) =
d (2„)d-, (mP)"""e '&(d+, )/2(mP),

which yields the proper relationship between the density and fugacity for the ideal relativistic Boltz-
mann gas, n =I-d~. For the Bose gas we find that

~ z'e("-" ' IC(„„)„(kmP) 1 z', , k" ')" Z(„,»„(mP) V„

which with Eq. (7) gives

~(d -3)/2 (2m)(d+1)/2 Ak -mg

2(2 )d-1 a(d-»/2 ~ k(d-1)/2 (d+»/2( P) y 1 A -~5 s
1T/ A=y e (9)

where the second term corresponds to the zero-momentum states as in the usual BEC with d =3. The
structure of the expansion (9) shows that for the relativistic gas" it is useful to introduce a dimension-
ally dependent quantity

In the ultrarelativistic limit (mP-O), I„ leads to
21'(d)/I'(d/2)(l/2w+2P), which for d =2 reduces
to twice the optical wavelength" to the third pow-
er and in the nonrelativistic limit (mP- ~) it leads
to)( ', where )( =(27/P/m)'/2 is the thermal wave-
length. "

In order to examine the conditions for the BEC
more closely, we rewrite Eq. (11) in such a way
that only the condensation term I d 'z/Vd(1 —z)

! remains on the right-hand side. Analogous to the
usual BEC the nonnegativity of this term for 0
~ z & 1 provides an inequality which in the limits
V and z-1 yield

~ exp[(k —1)mP] K(d+»/2(kmP)
k'" ""

IC(d„)/2(IP) '

where the equality defines a critical density n, .
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TABLE I. The ratio of the critical density of a Bose gas to the correspond-
ing Boltzmann gas in various dimensions and for different values of mP. The
nonrelativistic f f (d/2) j and ultrarelativistic t f(d) l limits are included.

K (d/2) mP =10 mP = 0.5 mP = 0.1

2
3 2.612
4 1.645

1.341
6 1.202
7 1.127

2.406
1.522
1.245
1.135
1.100

2.084
1.451
1.214
1.112
1.061

1.665
1.241
1.089
1.041
1.020

1.460
1.150
1.062
1.028
1.013

1.251
1.095
1.043
1.021
1.012

1.645
1.2 02
1.082
1.037
1.017
1.008

cannot be well approximated by the corresponding
ultrarelativistic (massless) case. This distinc-
tion has not always been clearly stressed. " Fur-
thermore, we want to point out that our results
on the occurrence of BEC can also be seen from
the phase-space integral for the average particle
number of the form fs dpp' '(e ' ' " —1) '.
The upper limit of integration provides no prob-
lem because of the dominant exponential struc-
ture. However, the lower limit of small momen-
ta reduces to an integrand of the form p" '/[E(p)
—p], which by expansion of Eg. (2) yields p" '.
Thus this integral diverges at and below d =2.
The ultrarelativistic case from a similar argu-
ment has an integrand of the form p' ', which
first diverges at d =1. The integral fdp/p in gen-
eral possesses a simple logarithmic divergence
as seen in Fig. 1. The absence of a dimensional
scale provides the physical basis for the termina-
tion of the BEC.

The observed qualitative difference between the
massless and the massive Bose gas at the conden-
sation point shows itself most drastically through
the anomalous behavior of the specific heat c„ in
three dimensions. " We find that the massless
Bose gas exhibits a discontinuity &c„for all d ) 2
while its massive counterpart yields this struc-
ture first for d & 4, so that

&c„(d/2, m=O) = lim &c„(d,rn &0).
m ~~

This result" corresponds directly to the work
which we have presented here for the particle
density as the determiner of BEC from the ratio
d/e.
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