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Bifurcation-Theory Approach to Electron Solids in Superstrong Magnetic Fields
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Bifurcation theory is used to study the transition from a low-density nondegenerate
electron gas to an "electron solid, " in a superstrong magnetic field. The dynamics of
the gas are described by a set of nonlinear equations, and the transition is seen as the
bifurcation of spatially periodic solutions from the trivial constant solution. Electron
solids are a good approximation for condensed matter in the outer crust of magnetic neu-
tron stars.

Condensed matter in the outer crust of pulsars
has peculiar properties due to the enhancement
of the electron motion by magnetic fields of the
order of 10" Q. Various models have described
this structure in terms of bundles of "magnetic
polymers, "' or a collection of "squeezed
atoms, "' ' or an "electron solid. "' Mixed ap-
proaches have also been attempted. ' ' Here I
adopt the point of view of Kaplan and Glasser, '
who argued that in a superstrong magnetic field
exchange effects' ' dominate the behavior at
equilibrium of a low-density plasma consisting
of electrons and a positive background charge.
Consequently, the electron component of the plas-
ma undergoes a Wigner transitionio- i2 to an or-
dered state, which might be called an electron
solid.

In this Letter I investigate the occurrence of
such a transition as a function of the magnetic
field, electron density, and temperature. To the
usual variational method' ' ' I prefer a differen-
tial-equation approach. ' ' This has the advantage
that the mathematical tools of bifurcation theory"
can be used to compute the transition, without
any ad hoc assumption, "' about the type of lat-
tice that would arise. The Wigner transition is
described as the bifurcation of a spatially period-
ic solution (solid phase) from the trivial homoge-

!

neous solution (plasma phase). " Under the usual

approximations for an electron gas in a super-
strong magnetic field (adiabaticity hypothesis,
restriction to the ground Landau level, Hartree-
Fock approximation), ' my treatment of the elec-
trons is exact at zero temperature. Tempera-
ture effects are incorporated in a first approxi-
mation by performing a trial-function calcula-
tion; this avoids the cumbersome task of having
to solve a nonlinear integral equation for the
electron distribution function. " The distribution
of positive charge is assumed to be given, rather
than arising from the dynamics of the plasma;
following a common procedure, "" it will be ap-
proximated by a "jellium"- a neutralizing uni-
form background. The various approximations
of the model are discussed briefly at the end of
the Letter.

In the Hartree-Fock approximation for an elec-
tron gas in a superstrong magnetic field 8 at
temperature T, the electron number density n(r)
can be written as4

where I„(q) denotes a Fermi-Dirac function, "
and t)(r) is a function related to the electrostat-
ic potential p(r) and to n The ex.plicit relation-
ship is obtained from a variational principle. "
The free energy of the electron gas is written as
E[q] = f nf d'x, where' '

1„,(q) 2~elc ", 2Sc "' Af=k,T(k —2 '" + n 1n lt' n —— +et,I „,(q) a ea 2
(2)

A being a constant. ' Minimization of the functional E[q], with the constraint f n d r =const, yields

2mekc 3/2

kBTg+ n 2ln ~' n —4+1 +eq —p =0,
B eB (3)

where p is a Lagrange multiplier. My model, based on Eqs. (1) and (3), may be thought of as the low-
est nontrivial approximation to the dynamics of the electron gas at nonzero temperature.
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x=(x'a, ) '" r,

N{x) =m'A~a, n(r), R =n'A. 'a, p,

T = 2h'k, T/me',

where A. =(Sc/eB)'" is the electron gyroradius
and a, is the Bohr radius. My basic system of
equations then reads

(4)

2'"z A —1-
m2'7 g +4N ln — V

map 2

g-R;

it depends on the three parameters ~, R, and ~.
Equations (5) have the trivial solution

I am interested in solutions that bifurcate from
this homogeneous solution and are periodic. The
bifurcation points are determined from the condi-
tion that the linearized equations for N'(x) =N(x)
-N and q'{z) =q(x) —g have nontrivial solutions.
Expressed in terms of the Fourier amplitudes
¹(R)and q'$), this condition yields the "disper-

Poisson's equation 6p =- 4~e(n —p) can now be
used to eliminate p from Eq. (3); p stands for the
number density of positive elementary charge,
assumed to be constant. Then, Eqs. (1) and (3)
form a system of two nonlinear equations for the
electron number density, n, and the trial func-
tion, g. Now I introduce the dimensionless quan-
tities

sion relation"

—I%I 'g(A, F/. , 7) = (a,/A)'",

where
j./~

g(x, q, 7) = —
~)

+in ~ I „,(q) +
2ap

A periodic solution can therefore bifurcate only
inside the bifurcation domain D =((X,q, v) I g& Oj.

The Fermi-Dirac functions have been studied
in detail, both analytically and numerically, "and
the behavior of the function g(A. , q, ~) can be fol-
lowed without difficulty, despite its seemingly
complicated appearance. For any given (X,7), g- ~ as I gl - ~; g has one minimum at some finite

;„(v), which is independent of X. Moreover, g
is a monotonically increasing function of A. , for
any (q, T). Knowing this, let us consider the
curve C, =j(A„q„7.0)l g=0, Bg/8@ =0), which lies
on the boundary of D. Its projection onto the (z,
T) plane, shown in Fig. 1, will be referred to ss
the critical curve. For any (A. , w) above the criti-
cal curve, g&0 independently of the value of g,
and the bifurcation cannot take place. Below the
critical curve, there exists an interval II about
Qp, such that g & 0 if g &II, and g & 0 outside it;
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FIG. 1. Critical co.rve in the (A, , z) plane.
FIG. 2. Bifurcation diagram in the (A, ,d) plane, for

three values of 7.
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this interval collapses to the point q, when (A, T)
tends to (X„7,) on the critical curve. Correspond-
ingly, the bifurcation diagram at a given tempera-
ture (i.e., a section r = const through the bifurca-
tion domain) has the aspect shown in Fig. 2, for
three values of T. Instead of g, I used the mean
interelectron spacing, d =(3/4&n)'~'; its explicit
relationship to q follows from Eqs. (4) and (6).
At nonzero temperature, the Wigner transition
can occur only inside the lobes shown in Fig. 2,
which shrink towards the origin as the tempera-
ture increases. Higher magnetic fields are need-
ed to maintain long-range order, by increasing
the exchange energy, ' against the disruptive ef-
fect of increased thermal agitation at low densi-
ties, or of increased Fermi energy at high den-
sities. The limit of zero temperature is obtained
by use of the mell-known asymptotic expansions
of the Fermi-Dirac functions and eliminating g
between Eqs. (6) and (8). The bifurcation domain
then expands to cover the entire region above the
dashed curve in Fig. 2.

It is sometimes forgotten that the bifurcation
diagram does not rigorously coincide with the
phase diagram, which indicates the domain of
existence of the stable solid phase. To see this,
let us go back for a moment to the full nonlinear
equations (5). Lacking information about the ex-
istence, multiplicity, and stability of their solu-
t:ions, we must resort to a qualitative description
in terms of the so-called response diagram of bi-
furcation theory. " In addition to the parameters
A, , d, and v, a solution will be characterized by a
set of order parameters & ={)„$„...) measur-
ing its departure from the trivial homogeneous
solution. The response diagram is a plot of all
the solutions in the (X,d, 7, $) space. The possible
occurrence of secondary bifurcations and dynami-
cal instabilities, as mell as—in our case — -the ex-
istence of a three-dimensional continuum of bi-
furcation points and the degeneracy of the bifurca-
tion solutions, "could make this picture quite
complicated. It can be visualized as a tree grow-
ing from the bifurcation domain into the additional
dimensions $, with possible loops attached, and
even disconnected pieces. For any given (X,d,
7.), the physically relevant solution, selected on
the basis of a stability criterion (e.g. , the mini-
mum of the free energy), corresponds in general
to a set of order parameters )„,be{0). The do-
main of existence of the stable solid phase is ob-
tained by intersecting the response diagram with
the surface g =)„,b(A, d, T); its si.ze and shape,
and even its topology, could be different from

those of the bifurcation domain.
At the low densities and temperatures relevant

for this problem, the adiabatic assumption and
the ground-level restriction are good approxima-
tions. ' ' On the other hand, electron correla-
tions, which enhance the Wigner transition, are
sizable, "and should be included in a more pre-
cise calculation. " The trial-function calculation,
based on the Ansatz of Eg. (1), is justified by the
fact that the electron distribution function is simi-
lar to the Fermi-Dirac distribution, even when
exchange becomes important. " At nonzero tem-
perature, corrective terms should be added to the
energy, Eg. (2), making A a function of q." The
fact that such terms tend to be canceled by corre-
lation effects increases the accuracy of the pres-
ent simplified model, in which both corrections
are neglected. The standard assumption of a
smeared-out positive charge" "becomes more
realistic as the magnetic field increases; how-
ever, the existence of an ion lattice can be en-
tirely neglected only in the limit of infinite mag-
netic field.

The idea that superstrong magnetic fields thread
the surface of neutron stars has received new sup-
port from the discovery of the 53-keV line in the
spectrum of Her X-1,"which points to a surface
field of 5 & 10" G. Taking this as a typical value,
our calculation sets an upper bound of 3x10' K to
the temperature at which the Wigner transition
can take place, in good agreement with estimates
of the surface temperatures of neutron stars,
based on their cooling mechanisms. " Qn the
other hand, the maximum electron number den-
sity at which the bifurcation survives, in the
same field but at zero temperature, is 10" cm ',
corresponding to a mass density of 4&&10' g cm '
for an iron crust. In the same conditions, a vari-
ational calculation assuming an electron gas mov-
ing in an ion lattice yields a density several times
higher. ' ' This discrepancy could be attributed,
trivially, to the difference between the phase and
bifurcation diagrams already mentioned; or, more
likely, to the oversimplifying assumption of a uni-
formly distributed positive charge. It appears,
however, that condensed matter in the outer crust
of pulsars is very close to an electron solid; viz. ,
its properties are dominated by electron exchange
and correlations.
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A superconducting contribution 6o(T) to the electrical conductivity o.(T) has been ob-
served at temperatures up to about twice the transition temperature T, = 1.17 K for bulk
aluminum. The form of 6c(T) is found to be n [T /(T —T )]", with u independent of o(T), in
agreement with the theory of superconducting fluctuations. However, significant differ-
ences from the theory are found, with o. more than two orders of magnitude too large and
n =4 rather than 2.

Superconducting effects in the form of enhanced
diamagnetism have been observed' at tempera-
tures up to about twice the transition temperature
T, for type-I bulk metals. We report here the
first experimental observation of enhanced elec-
trical conductivity for a type-I bulk metal. We
find traces of the effect up to about 2T, . As was
concluded for the enhanced diamagnetism, the en-
hanced conductivity is attributed to fluctuation
superconductivity.

Enhanced conductivity well above T, has been
previously observed' for other classes of materi-
als, such as thin films and very dirty bulk sam-
ples. However, in contrast to almost all these
previous observations, our results show an effect
which is more than two orders of magnitude larg-
er than the prediction of Aslarnazov and Larkin, '
Maki, and Thompson. ' Moreover, we find a tern-
perature dependence of [T,/(T —T,)]'t', intermedi-
ate between the predicted exponent of & for bulk
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