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For heavy qq bound states in quantum chromodynamics, spin-dependent forces are ob-
tained in a manifestly gauge-invariant formalism. Classical spin-orbit and Thomas pre-
cession terms are expressed in general in terms of the static energy, and assuming that
the confinement mechanism is electric determines uniqoely the spin-dependent forces in
terms of the nonrelativsitic potential. The Coulomb plus linear potential model gives P-
state splittings correct to better than 25% and a mass for the g~ «3.080+ 0.020 GeV.

The fine structure in charmonium has been the focus of intense experimental' and theoretical' re-
search during the past several years. In the nonrelativistic approximation the Coulomb plus linear
potential provides the basis of a phenomenological model which correctly describes the gross features
of both the charmonium and the upsilon-family spectra. An understanding of their fine structure, how-
ever, would provide additional important insights into the nonrelativistic limit of the strong interac-
tions. Here we use a manifestly gauge-invariant formalism to determine all spin-dependent forces
(except those due to fermion-pair creation or annihilation) and then, assuming that the confinement
mechanism is electric rather than magnetic, show that the spin-dependent forces in charmonium are
determined by the nonrelativistic potential: No new parameters are introduced. The resulting triplet
P-state masses agree with the current data within the accuracy of the hypotheses. Moreover, the q„
the pseudoscalar partner of the J/g, is predicted to have a mass of 3.030+ 0.020 GeV, 65 MeV below
the 8/g.

The static energy (or potential), e(R), of an infinitely massive fermion-antifermion pair is expressed
in terms of a Wilson loop integral by

e(A) = lim —T 'le(Tr (0) P (exP[eg (,Ar(z) Aze]) )
0) (&)

where A "(z) —=A, "(z)t' is the Yang-Mills potential and t' the fermion representation matrices which
will be suppressed. C is a closed rectangular path of spatial length R and temporal length T. The
path ordering, indicated by P, is necessary because the fields A do not commute with each other,
and the trace is over group indices. Equation (1) is to be evaluated in Euclidean space. The sections
of the path C corresponding to the time integrations arise from the nonrelativistic fermion propagators
while the spatial parts ensure gauge invariance. Furthermore, the relativistic spin-dependent correc-
tions to the static energy can be included by retaining corrections to the nonrelativistic limit of the
fermion propagation function.

The relativistic corrections to the fermion propagation function are found by iteration of the follow-
ing integral equation for S(x, y; A), the full fermion propagation function:

S(x, y; A) = S,(x, y; A) + j d z S,(x, z; A) y D(z) S(z, y; A) (2a)

D =iV+gA is the covariant derivative and S,(x, y; A) is the nonrelativistic propagator given by

0

iS0(X, y; A) = ti(Xo —y ) ezp[ —im(X0 —yo)]P[eXp(ig j dZA'(X, Z))] 5(X —y)

0 y0
+ 8( yo —xo) exp [im(x —y ) ]P[exp(ig f 0 dz Ao(x, z) )]5(x —y), (2b)

where P denotes path ordering. Also, it is useful to project onto the positive- and negative-frequency
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components of the fermion propagator:

1+/ 1++ + 1++ I —pS —
2

S
2

S —
2

S

etc. Introducing these projectors into Eq. (2a), and eliminating the mixed components S ' and S',
give

S++(x, y; A) = SD++(x, y; A) + Jd z d w SD++(x, z; A) y ~ D(z) SD (z, w; A) y ~ D(w) S++(w, y; A)

and a similar equation for S (x, y; A). The first iteration of this equation describes a relativistic cor-
rection in which the fermion propagates forward in time from x to z. At z it suffers a y D interaction
and then propagates backwards in time to w where the fermion again has a y D interaction and is re-
stored to its original state of motion. This expansion is not perturbative in the coupling constant, but
in 1/m. We perform the time integrals in Eq. (3) by observing that the region between z' and w', when
the fermion travels backwards in time, should be suppressed nonrelativistically. Therefore, expand-
ing the integral in powers of (z'-wD), a 1/m expansion, and keeping only the leading terms produce

/

~ ~1,[D'(x) —SS ~ B(x))IS (x, x;A)=S ''(x, SA)/ fdx S "{x,x;A) — -[D (m) —SS B(m)]

+ 4, (&;, —i~;,), &")&'(w)&'(w) S (w, y;A), (4)

where E[ = s&A"- 8 A"+g[A", A'] and the gauge electric and magnetic fields are E'= &~ and P = —'O'"P'.
Equation (4) succinctly characterizes all relativistic propagation corrections to order (1/m)' in a
manifestly gauge-invariant form.

To incorporate the spin corrections to the static energy we include the corrections to the propaga-
tor SD determined by Eq. (4) and express the result in the form of Eq. (1). To simplify the notation we
introduce the following expectation value (on the Wilson loop) of any operator O(x) where xa C:

(O(x)) —= f[dA "]TrP(exp[ig f dz "A &(z)] O(x))e

where S(A) is the classical Yang-Mills action. In this notation

1
x(S) = lim ——lx (1)).

+oo T

The 1/m corrections involve the expectation values (D'/2m) which is spin independent and (o/2m)
~ (B) which vanishes because of parity conservation.

The (1/m)' spin-dependent corrections to e(B) come from the explicit (1/m)' term in Eq. (4) as well
as iterations of the 1/m contributions. Considerable simplification of the expectation values of these
operators is found by the use of the following identities:

P(x', y'; x)P( y', z'; x) = P(x', z'; x), (7a)

xo
D(x', x)P(x', y'; x) = P(x', y'; x)D( y', x) + f, dz' P(x', z'; x)E(z', x)P(z', y', x), (Sb)

where P(x, y;x) = Pexp[igf Ddz'A—(z', x)]. These identities relate the electric field and covariant
derivatives to each other. Also, the covariant and regular derivatives are related by

Pexp[ig f dz A(x', z)]D(x', x) = i&"Pexp[igf dz ~ A(x', z)].
g0-+ y ~

(7c)

The final form for the spin-dependent potential (after several integrations by parts) is VsD=- V, + V„
where

2CT

V, 5(x, —y, ) 5(xB —y2) = lim ——,e;,„'
2

S„"'(1)&,*'+ '
2

&„"&(1)8, *' 6(x, —y, )6(xB-y ) (8)

1206



VOLUME 43, NUMBER 17 PHYSICAL RKVIKW LETTERS 22 OcTOBER 1979

and

2, yio
V]) 5(x, —y, )5(x, -y, ) = lim ——,, —,J dz dz'v, '(z' —z)(B'(z, x,)E'(z', x,)) 8 *

T (1) 2m'

f, dz f, d z'(x, ' z'(B'( z, x,)E'(z', x,)) 8,."2
1 2 1 2

+])—2] — J, dz J, dz'o, 't|, '(B'(z, x,)B'(z', x,))Im,m,

x r(x, -y, )&(*.-) )) (9)

where 1 refers to the fermion and 2 to the antifermion.
The expression for V, can be explicitly evaluated with use of Eq. (6). The result is

v, ~ L„o,~ L, 1 de(R)
(10)a 4m 2 4m

where the angular momentum L„=-iR&V'„. Note that for a bound state with its center of mass at rest
Ly L2 = L and that V„part of the spin-orbit coupling, includes the classical spin-orbit term and the
Thomas precession effect. Equation (10) follows solely from the vector nature of the underlying gauge
interactions of the fermions.

Equations (9) and (10) together describe the spin-dependent forces in quantum chromodynamics. The
terms in V„unlike V„cannot be reexpressed in terms of & alone. The expression tE ~ V' in V, arises
from the kinetic energy D' and, appropriately, is related to the generator of boosts. The second term
in V, corresponds to the I/m, m, spin-orbit forces; and spin-spin and tensor forces are contained in
the last term. In the Abelian limit, Eqs. (9) and (10) reproduce the standard Breit interaction in low-
est-order pertrubation theory. The first term in V~ does not contribute in this limit.

To obtain phenomenological consequences of Eqs. (9) and (10) we assume that the confinement mecha-
nism is electric rather than magnetic. Then the electric field alone is responsible for the long-range
part of the potential whereas the magnetic field effects should be short range, calculable in perturba-
tion theory. Explicitly V, is calculated using lowest-order perturbation theory since it contains the
magnetic field and only the term V, contains the effects of the long-range interaction. The resulting
expression for the spin-dependent potential' is (with S, = 2o, )

1 - 1 - - 1d~(R)
VSD(R) =

2 L'81+ 2 L'82
m] m2

+— ' L ~ (S, +S2)—,+ n, S, ~ 825(R) + ' (3S, ~ R S, R —8, ~ S,) —,~
m m2

' R',m2 3m,m,

For the static energy we use the form

(11a)

e(R) = ——,'n, /R +R/a ',
with parameters' n, =0.39, a=2.34 GeV ', and charmed-quark mass m, =1.84 GeV. Then (with S=S,
+S,)

(11b)

corrections can easily account for effects of this
order of magnitude. Note that neither pure L ~ 8
nor pure Coulombic terms can account for the
magnitude of the experimental splittings. The
ratio of splittings r= [m(P, )-m-(P, )]/[m(P, )
-m(P, )]--8 experimentally, where r]".s =-,' and
+QpU$ 9 Our model gives
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Vso(R) =2, S ~ L,' +, +~, 8, ~ 8,5(R)+( S, ~ R S, ~ R —S, ~ S,) 31 2 1 2 3m 2R3

In Eq. (11b) the spin-dependent splittings are de-
termined uniquely since the results depend only
on the nonrelativistic potential and perturbation
theory. The P-state splittings for charmonium
predicted by Eq. (11b) are given in Fig. 1 and
agree with the experimental values' to within
25%%uo. Neglected contributions from higher-order
perturbative terms and higher-order relativistic
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Static Energy
Model

(Input Parameter)

3.520

Perturbative
Contribution

+.028

Linear
Confinement
Contribution

Predicted Observed
Mass Mass

+.011 PP(3.559) (3 551)

ton branching ratio from P' of -0.5%. If this
state is the g, , higher-order perturbative correc-
tions to the J/$-7I, mass splitting are substantial-
ly different than assumed in Ref. 10. The correc-
tions are discussed in detail in Ref. 9.

—.020 -.011 P] (3489)
(3.503)

-.080

(5.414)
3

The spin-dependent potential of Eqs. (11a) and

(11b) has many other applications to the phenome-
nology of the J/4' and T family of resonances. '
Of particular interest is the mass of the '8, state,
q, , the spin-0 partner of the J/+. From Etl.
(11b) and the wave function computed with use of
the parameters of the Cornell model, "

m(q, ) =3.030+ 0.020 GeV.

The error is the approximate magnitude of the
neglected theoretical contributions. Confir ma-
tion of the existence of the g, close to the J/g
would provide strong supporting evidence for the
assumption of short-range magnetic and long-
range electric gauge interactions between the
fermions postulated here.
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Note added. —Recent evidence [E. Bloom, in
Proceedings of International Symposium on Lep-
ton and Photon Interactions at High Energies,
Batavia, Illinois, 26-31 August, 1979 (to be pub-
lished)] indicates the existence of a narrow state,
seen in the inclusive photon spectrum of P', with
a mass of 2.976+ 0.020 GeV and an exclusive pho-

FIG. 1. Fine structure of 1 P~ states in charmonium.
The splittings from perturbative electric and magnetic
interactions are in the second column, and the addition-
al splittings due to the nonperturbative spin-orbit con-
tribution are in the third column. All energies are in
GeV.

~For a general experimental review see, e.g. , G. J.
Feldman and M. L. Perl, Phys. Rep. BBC, 285 (1977).

2See, e.g. , T. Appelquist, R. M. Barnett, and K. D.
Lane, Annu. Bev. Nucl. Part. Sci 28, 887 (1978).

E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane,
and T.-M. Yan, Cornell University Report No. CLNS-
425, 1979 (to be published).

There are other approaches for computing spin-de-
pendent corrections. The formulations of C. G. Callan,
R. Dashen, D. J. Gross, F. Wilczek, and A. Zee [Phys.
Rev. D 18, 4684 (1978)], and N. Parsons and P. Senja-
novic [Phys. Lett. 79B, 273 (1978)j are the most similar
to the method presented here.

The dominance of the electric field contributions to
the potential is suggested even in perturbation theory.
See S. Davis and. F. Feinberg, Phys. Lett. 78B, 90
(1978).

This result differs from the treatment of spin-depen-
dent forces within the Massachusetts Institute of Tech-
nology bag model although the magnetic forces are also
short range (perturbative). There the only long-range
term is the Thomas term. K. Johnson, private commu-

nicationn.

Comparing this form for the spin-dependent potential
in @CD to the phenomenological parametrization of pre-
vious models [see Ref. 2, Eqs. (8.86) and (8.87 a)], we
would conclude that this potential arises from a mix-
ture of a scalar and vector confining potentials (scalar
fraction g= 2). Actually the form follows directly from
the vector nature of the underlying gauge interaction.

The P-state masses quoted here are the results of
the Mark-I detector group at SPEAR: W. Tanenbaum
et a/. , Phys. Rev. D 17, 1731 (1978).

9A more detailed analysis of the phenomenological
implications of the form of the spin-dependent poten-
tial and a treatment of instanton effects is discussed in
E. Eichten and F. Feinberg, to be published.

OThere is a large correction to the Van Royen-Weiss-
kopf relation between the wave function at the origin
and the leptonic width in the next order of perturbation
theory (see Ref. 8 and the sources cited therein); al-
though the perturbative corrections in the J/g-q split-
ting are in general different, the same large correction
appears in the relation between the wave function at the
origin and J/g-q, splitting. This large correction has
been included in the quoted mass.
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