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total strength of 0 27pp which is quite compar-
able to experiment. At higher energies an addi-
tional strength of 0.6 p,,' is predicted to be frag-
mented over a number of levels. The ground-
state wave function generated in this calculation
has a 17% 2p, 2h intensity.

On the other hand, the SU, shell-model calcu-
lations of Millener' predict only -0.05 pp of
ground-state M1 strength between 16 and 20 MeV.
The total M1 strength is predicted to be weak be-
cause the ground-state correlations are predicted
to be mainly of maximum spatial symmetry [4']
and hence cannot be excited by the dominant (spin)
part of the M1 operator. The present experi-
mental results appear to require the "0 ground-
state correlations to be mainly of lower spatial
symmetry.

In the future it will be interesting to search ex-
perimentally for Ml strength at higher energies
in "O, although this will probably be appreciably
more difficult.
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We report the observation of a laser-induced charge-transfer collision. In the presence
of an intense laser beam, ground-state calcium ions collide with ground-state strontium
atoms, selectively producing excited strontium ions and calcium neutrals. The laser-in-
duced collision cross section has a linewidth of about 50 cm and peaks —70 cm ~ from
that wavelength which satisfies the energy defect of the separated atoms.

This Letter describes experimental observa-
tions which we believe demonstrate, for the first
time, a laser-induced charge-transfer colli-
sion. ' 4 Energy is first stored in the form of
ground-state ions of one species. An intense la-
ser field is than used to transfer this energy rap-
idly and selectively to an excited ionic state of a
second species.

The process studied is

Ca'(4s S&2)+Sr(5s 'S )+k(u

-Ca(4s''S )+Sr'*(5p P, ,')
and is shown schematically in Fig. 1. Without

the la.ser photon, Eq. (1) is endothermic by 2.6
eV (- 30 kT at 1000'K) and has a vanishingly small
cross section. The laser photon supplies this en-
ergy and may be thought of as raising one of the
two Sr valence electrons to a virtual level of ap-
proximately Sr(5s 5p 'P, ') character; the unex-
cited Sr electron can than be captured by Ca',
leaving Sr in the Sr'(5p'P„, ') excited state. The-
ory predicts' 4 that, in contrast to the case of
the previously studied dipole-dipole processes, ' "
the maximum cross section for the laser-induced
charge-transfer process should occur when the
laser is tuned to a wavelength shifted (typically)
by about 100 cm ' from that which exactly satis-
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FIG. 1. Energy level diagram for the laser-induced
charge-transfer process Ca+(4s S&~) +Sr(5s Sp) +Rd—Ca(4" S,) +Sr'*(5p'S»'}.

fies the energy defect of Eq. (1).
The experimental system used to study the la-

ser -induced charge-transfer process has been
described previously. " Briefly, the output of an
actively mode-locked Nd-doped yttrium-alumi-
num-garnet oscillator-amplifier system was up-
converted to 3547 A and used to synchronously
pump two dye lasers. Both dye lasers were cav-
ity dumped to produce two independently tunable
40-ps pulses of several megawatts peak power
with linewidths of about 10 cm '. The output of
one laser, the pump laser, was used to create
Ca' ground-state ions. This was done by two-
photon pumping the Ca(4s''S, )-Ca(4s4d'D, ) transi-
tion; a third photon of this same laser completed
the ionization. The 40-ps-long pulse from the
transfer laser was delayed by 5 ns from that of
the pump laser and was scanned over the range
4510A & A ~ & 5060 A. Both laser beams were
focused into a metal-vapor cell to an area of
about 10 ' cm'. The cell was operated at about
840'C providing ground- state densities of both
species of about 10"atoms/cm'. To protect the
windows, the cell also contained a background
pressure of 15 Torr of Ar.

Population of the Sr+(5p 2P,,2o) target state was
detected by imaging the resulting resonance line

C

fluorescence at 4078 A into a 1-m spectrometer
of about 4 A resolution equipped with an RCA
31034 photomultiplier. As the transfer laser was
scanned, the signal from the photomultiplier was

integrated over each each of four consecutive 10-
ns time intervals by a set of gated integrators.
For each pulse the outputs of the integrators were
recorded by a minicomputer and smoothed at a
later time.

The ability to obtain time resolution of the fluo-
rescence output from the target state is particu-
larly important in an experiment of this type.
The transfer laser is quite intense (-10' W/cm')
and as it is scanned it will excite various single-
and multiple-photon transitions in both Sr and Ca,
thus producing highly excited neutrals and ground-
state ions. Collisions of these species with each
other, as well as with free electrons, mill popu-
late the target state during a time which is char-
acteristic of their lifetime (several hundred nano-
seconds for ions and resonance-line neutrals).
On the other hand, the laser-induced collisional
process only occurs for the 40 ps during which
the transfer laser is present. The end product
of this process will decay at a rate correspond-
ing to the fluorescence lifetime of the target
state (-15 ns).

Figure 2 shows the integrated amplitude of the
target-state Quorescence at 4o78 A as a function
of the transfer-laser wavelength, during each of
the sequential 10-ns gates. Laser-induced charge
transfer to the excited ionic state is observed to

O

peak at X~ =4715 A. This peak occurs at a wave-
length which is 15 4, shorter (68 cm ') than that
wavelength (Xs „=4730A) which exactly satisfies
energy conservation for the separated atoms.
The line shape of the laser-induced charge-trans-
fer process is roughly symmetrical and has a
width of about 50 cm '. One other single-photon
and two multiple-photon excitations are noted in
Fig. 2. These are each identified and persist al-
most unchanged in amplitude for the 40-ns obser-
vation period. The laser-induced charge-trans-
fer collisional process, however, decays with a
time constant of 15 ns.

The target-state excitation obtained when the
transfer laser is tuned to the Sr resonance line
at 4607 A (Fig. 2) is similar to the two-step proc-
ess recently reported by Dutta et a/. ' In the
first step, the Sr(5s5p 'P, ') state is populated by
the transfer laser; in the second, population is
transferred to the target state by an exothermic
(- 500 cm ') charge-transfer collision. Unlike

0
the X~ =4715 A process, this two-step process
persists for the lifetime of the excited Sr state
and maintains a nearly constant amplitude over
the full 40-ns observation period.

Figure 3 shows the relative amplitude of the
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FIG. 2. Fluorescence from the Sr (5p P'&~ ) target
state as a function of transfer-laser wavelength inte-
grated over each of four consecutive time gates.

X~ =4715 A signal as a function of the transfer-
laser power density. Some saturation is appar-
ent at a laser power density of about 10' W/cm'.

Since the density of ground-state Ca' was not
measured, it is not possible to make an accurate
estimate of the laser-induced collision cross sec-
tion. We estimate that the population of the two-
photon-pumped Ca(4s4d'D, ) level was about 10"
atoms/cm'. An assumed cross section for photo-
ionization from this level to the Ca' continuum
of 10 "cm' implies a Ca' density of about 10"
ions/cm'. From calibration of the target-state
Quorescence we estimate a target density of 10"
excited ions/cm3 produced per transfer-laser

pulse, thus implying, as a rough estimate, a la-
ser-induced collision cross section of about 0,
=5&10 "cm2.

To confirm our interpretation of the ~~ =4715
0
A signal, several additional measurements were
made: (1) The expected selectivity of a laser- in-
duced collision was verified by tuning the analyz-
ing spectrometer so as to observe fluorescence
from the other (800 cm ' lower) member of the
Sr' resonance line doublet. The A. ~ =4715 A sig-
nal disappeared, while the two-photon signals re-
mained. (2) The Ca' population was eliminated by
detuning the pump laser by 10 A from the two-
photon state in Ca. This caused the signal at A ~
=4715 A and also at ~~ =4607 A to disappear,
while the two-photon signals remained. (3) Simi-
larly, the ~~=4715 A signal was not observed in
a cell containing only Sr. (4) With the pump laser
tuned to give two-photon pumping of the Sr(5p' 'S,)
level, thereby directly producing Sr excited-
state neutrals and ions, the X~ =4715 A signal
was not observed. (5) The linewidth, shape, and
position of the ~~ =4715 A peak were unaffected
by increasing the Ar buffer-gas pressure by a
factor of 10. (6) The analyzing spectrometer was
tuned to monitor fluorescence from the Ca'(5p

P,/2 )-Ca'(5s S,/2) resonance transition. Again,
no signal was present at X~ =4715 A.

We note that a narrow (&3 cm '), very weak
component, J= 4 -J = 4, of the Sr autoionizing
multiplet Sr(4d5p 3Fo)-Sr(4d6d'F) has been re-
ported at 4715 A." The absence of any signal
with the transfer laser tuned to the (thermalized)
J= 3-J= 3 component at 4662 A makes it highly

122



VOLUME 4), +UMBER 2 PHYSICAL REVIEW LETTERS 9 JULY 1979

unlikely that the J=4-J=4 component makes any
contribution to the observed 4715-A signal.

The experimentally observed line shape for the
laser-induced charge-transfer process is narrow-
er and more symmetric, and occurs closer to
the energy defect of the infinitely separated at-
oms, than is expected on the basis of a Landau-
Zener curve-crossing model. "' The similarity
of the polarizabilities" of ground-state Ca and
ground-state Sr imply quite parallel potentials
for the initial and final quasimolecular states,
and a shallow crossing at large B. This situation
probably requires a calculation along the lines of
Copeland and Tang' or Rapp and Francis. "

Ground-state ions are easily created and repre-
sent a means of long-lived energy storage. La-
ser -induced charge-transfer collisions provide a
technique for selectively and rapidly channeling
this energy into a designated excited state.
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Optical-optical double resonance using bvo nitrogen-laser-pumped dye lasers has
been used to make the first spectroscopic study of the hitherto unobserved gerade excited
electronic states of Li2. Three 'Z&+ and two 'll& states are observed. Molecular con-
stants in cm ' for one of the 'Ilg states are T, =31868.02, ~, =229.71, ~,X, =1.654, h,

0 469 86& o.'e = 0 005 95 s De = 7 301' and r3 =3.198 A.

Interest in the electronic structure of Li, dates
from the time of the earliest application of quan-
tum mechanics to molecular structure. ' After

molecular hydrogen, Li, is the least complex of
the stable homonuclear diatomic molecules, and
its electronic structure continues to be of funda-
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