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Inclusive Electron Scattering from 3He
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Data on inclusive electron scattering from °He over a large range of momentum trans-
fer (27 fm™!) are presented and compared with a one-nucleon knockout calculation based

on a Faddeev spectral function,

At large momentum transfer g, the dominant
feature in the inclusive spectrum of electrons in-
elastically scattered by nuclei is a wide peak re-
sulting from elastic scattering from individual
nucleons. Previous experiments have shown that
in the small ¢ range explored the quasifree-scat-
tering (QFS) peak is well explained by this one-
nucleon knockout model.! Systematic experiments
on inclusive inelastic scattering could be a valu-
able source of information on the momentum dis-
tribution of the constituents,? which for the region
of energy loss considered are nucleons. For
large q, where the nucleon final-state interaction
with the residual nucleus is small, a measure of
the average nucleon separation energy also can
be obtained. As suggested®** earlier, the contri-
butions from high-momentum components in the
ground -state wave function should appear primar-
ily in the wings of the QFS peak. In this paper,
we present QFS data covering the ¢ range appro-
priate for a test of nuclear momentum distribu-
tions.

This study has been performed on *He, a nu-
cleus that is particularly suitable for a compari-
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son between experiment and theory. For the
three-body system the Schrddinger equation can
be solved through Faddeev or variational tech-
niques. With realistic nucleon-nucleon forces as
the basic input, the ground-state wave function
can be calculated. Different three-body calcula-
tions yield appreciable variation (50%) in the
mean kinetic energy of nucleons,’ mainly because
these calculations yield different high-momentum
components. If quasielastic scattering yields
clean information on the momentum distribution
of nucleons, it can provide a test of nuclear force
models complementary to the most stringent
presently used®*—the binding energy and the
charge form factor.

The experiment was performed at the Stanford
Linear Accelerator Center together with a meas-
urement on elastic scattering.” Incident energies
ranged from 3 to 15 GeV; the typical beam reso-
lution was <0.2%, and the average beam current
15 pA. The scattered electrons were detected at
8° using the 20-GeV spectrometer.” To span the
QFS region, and in order to eliminate eventual
local variations of the multiwire proportional
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chamber (MWPC) efficiency, overlapping spectra
were taken at many magnetic field settings of the
spectrometer. At each spectrometer setting the
contribution of the Al target windows was meas-
ured using an empty target. A liquid hydrogen
target was used to calibrate the entire system
against the well-known e-p cross sections.

Before the experimental spectra were unfolded
for radiative effects,®® the small radiative tail
from the elastic peak was subtracted with use of
the peaking approximation.® The use of the peak-
ing approximation was found to be sufficient as
the radiative tail from the elastic peak contribut-
ed less than 1% to the experimental cross section
in the quasielastic region. The integrals for the
radiative corrections due to inelastic scattering
require, for every incident energy, knowledge of
the cross section do/dQdw for all lower incident
energies. To obtain the contributions for the low-
er incident energies we interpolated and extrap-
olated the measured response functions along
lines of constant excitation energy. This pro-
cedure® results in uncertainties of the corrected
cross sections of approximately 5%.

The experimental data covering the full quasi-
elastic region at six incident energies are shown |

d%
dwdQ

where 0,y is the cross section for electron-nucle-
on scattering taken from elastic e-N scattering,
and E.. is the energy of the center of mass of
the two residual nucleons.

Equation (2) is correct only if the antisymmet-
rization between initial- and final-state wave func-
tion may be neglected. This is the case!! if the
momentum transfer is larger than about twice the
Fermi momentum, a condition that is well ful-
filled by the present data. Using the plane-wave
Born approximation also requires that the effect
of the final-state interactions (FST) of the knocked
out nucleon is small enough to be reliably correct-
ed for. In an inclusive process, where the fate
of the recoil nucleon is disregarded, FSI are of
minor importance, in general. This is true in
particular for small A and for energies of the
knocked out nucleon (=w- w,;) larger than ~ 30
MeV. Under these circumstances the influence
of FSI may be accounted for by incorporating an
effective momentum?? for the nucleon determined
from an energy-dependent optical potential,’® V,
The effective-momentum approach gives distor-
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=3y dk o,y dESy (K= |, E)0(E- w+E, ..+ E,),

in Fig. 1. The threshold data at four incident en-
ergies are shown in Fig. 2. For clarity the data
have been averaged over 10-MeV intervals, al-
though the actual energy resolution was somewhat
better. The error bars of the data points include
all contributions except the 3% uncertainty in the
absolute proton normalization. The uncertainty
in the w scale is +5 MeV; the w scale was veri-
fied with use of the elastic peak energy deter-
mined in the (coincidence) elastic-scattering ex-
periment.’

The results can be discussed in terms of the
spectral function'® S(K,E) which is the combined
probability to find in the nucleus a nucleon of mo-
mentum K and separation energy E. In the case
of 3He, S can be written

S(E’ E) = <¢3il akTé(E - (H —E3))ak| ¢3i>

=2 K0 L agly Y PE= (B - EG). (1)
¥’ and ¢,* are the two- and three-body wave
functions, respectively; ak-T and ay are the cre-
ation and annihilation operators of nucleons with
momentum K. In the plane-wave impulse approxi-
mation the (e, e’) cross section can be expressed
as

@)

| tion corrections to do/dwd with an accuracy*
of + 25%.

Equation (2) is based on a fully relativistic
treatment of the e-N interaction. The bound-nu-
cleon distribution for the momenta < 2.5 fm™*
come from a nonrelativistic wave function. This
approach is similar to the one of Atwood and
West.! The present g-w region does not warrant
the simplifications of the bound-state description
necessary for a fully relativistic treatment.®

The calculation of the QFS cross section was
performed using the spectral function of Dieper-
ink et al.'” derived from the Faddeev wave func-
tion calculated by Brandenburg, Kim, and Tubis.'?
Both the Faddeev wave function and the two-body
wave function were obtained using the Reid soft-
core nucleon-nucleon interaction. For g<5 fm™?!
the nucleon form-factor parametrization of Jans-
sens'® et al. was used, while at larger q the scal-
ing (dipole) form factors®® were employed. The
resulting predictions for o(w) are shown in Figs.
1 and 2. The uncertainty in the treatment of re-
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FIG. 1. Inclusive cross sections for = 8° compared with QFS calculation based on Faddeev wave function. The
dashed line is the contribution due to A(1236) excitation (Ref. 21), the broken-dash line is the meson-exchange

current contribution (Ref. 22).

coil-nucleon FSI is estimated by performing cal-
culations (shown in Fig. 2) for V’ =0.75 V. For
selected energies Fig. 1 also shows calculations
for contributions of other processes to the inclu-
sive spectrum. The dashed curve is-the predomi-
nantly transverse contribution due to A(1236) ex-
citation as calculated by Do Dang.?* The broken-
dashed curve is the contribution from meson-ex-
change currents as calculated by Donnelly ef al.??
and includes the diagrams of pionic current and
pair and intermediate-N* excitation. The cross
sections for coherent 7 production calculated by
Borie?? are too small to be visible in Figs. 1

and 2.

From the comparison between experiment and
Faddeev calculation we see that over the main
quasielastic peak the agreement is very good.
This shows that over a very large range of mo-
mentum transfer we correctly understand the ba-

sic reaction mechanism. It also indicates that

the part of the *He momentum distribution contain-
ing most of the strength, the region for k<1 fm™,
is correctly predicted by Faddeev theory. The
high-energy loss tail of the QFS peak is less well
reproduced, as is the case?*** for heavier nuclei
and lower g; an interpretation of these deviations
shall not be attempted here because of the com-
plications introduced by the additional reaction
mechanisms contributing in this region of w.

At “low” w (w — we <200 MeV) and large q, we
observe that the calculation systematically under-
estimates the cross section (Fig. 2). These devi-
ations are much larger than shortcoming in the
approximate treatment of the final state employed.
Given the fact that in this kinematical region
mainly the large-k components contribute, it may
be reasonable to assign these deviations to a lack
of high-momentum components (¢ >2 fm™!) in the
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FIG. 2. Threshold inclusive cross sections for 6 = 8° compared with QFS calculation, Dashed line at 3.26 GeV is
the Faddeev calculation for V'= 0.75V; at larger energy it coincides with the solid curves.

spectral function.
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