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Inclusive Electron Scattering from 3He
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Data on inclusive electron scattering from He over a large range of momentum trans-
fer (2-7 fm ') are presented and compared with a one-nucleon knockout calculation based
on a Faddeev spectral function.

At large momentum transfer q, the dominant
feature in the inclusive spectrum of electrons in-
elastically scattered by nuclei is a wide peak re-
sulting from elastic scattering from individual
nucleons. Previous experiments have shown that
in the small q range explored the quasifree-scat-
tering (QFS) peak is well explained by this one-
nucleon knockout model. ' Systematic experiments
on inclusive inelastic scattering could be a valu-
able source of information on the momentum dis-
tribution of the constituents, ' which for the region
of energy loss considered are nucleons. For
large q, where the nucleon final-state interaction
with the residual nucleus is small, a measure of
the average nucleon separation energy also can
be obtained. As suggested"4 earlier, the contri-
butions from high-momentum components in the
ground-state wave function should appear primar-
ily in the wings of the QFS peak. In this paper,
we present QFS data covering the q range appro-
priate for a test of nuclear momentum distribu-
tions.

This study has been performed on 3He, a nu-
cleus that is particularly suitable for a compari-

son between experiment and theory. For the
three-body system the Schrodinger equation can
be solved through Faddeev or variational tech-
niques. With realistic nucleon-nucleon forces as
the basic input, the ground-state wave function
can be calculated. Different three-body calcula-
tions yield appreciable variation (5(P/o) in the
mean kinetic energy of nucleons, ' mainly because
these calculations yield different high-momentum
components. If quasielastic scattering yields
clean information on the momentum distribution
of nucleons, it can provide a test of nuclear force
models complementary to the most stringent
presently used' — 'he binding energy and the
charge form factor.

The experiment was performed at the Stanford
Linear Accelerator Center together with a meas-
urement on elastic scattering. ' Incident energies
ranged from 3 to 15 QeV; the typical beam reso-
lution was & 0.&o, and the average beam current
15 p, A. The scattered electrons were detected at
8' using the 20-QeV spectrometer. ' To span the
QFS region, and in order to eliminate eventual
local variations of the multiwire proportional
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chamber (MWPC) efficiency, overlapping spectra
were taken at many magnetic field settings of the
spectrometer. At each spectrometer setting the
contribution of the Al target windows w'as meas-
ured using an empty target. A liquid hydrogen
target was used to calibrate the entire system
against the well-known e-P cross sections.

Before the experimental spectra were unfolded
for radiative effects,"the small radiative tail
from the elastic peak was subtracted with use of
the peaking approximation. ' The use of the peak-
ing approximation was found to be sufficient as
the radiative tail from the elastic peak contribut-
ed less than 1% to the experimental cross section
in the quasielastic region. The integrals for the
radiative corrections due to inelastic scattering
require, for every incident energy, knowledge of
the cross section do/dQd~ for all lower incident
energies. To obtain the contributions for the low-
er incident energies we interpolated and extrap-
olated the measured response functions along
lines of constant excitation energy. This pro-
cedure' results in uncertainties of the corrected
cross sections of approximately 5%.

The experimental data covering the full quasi-
elastic region at six incident energies are shown

in Fig. 1. The threshold data at four incident en-
ergies are shown in Fig. 2. For clarity the data
have been averaged over 10-MeV intervals, al-
though the actual energy resolution was somewhat
better. The error bars of the data points include
all contributions except the 3% uncertainty in the
absolute proton normalization. The uncertainty
in the ~ scale is+ 5 MeV; the ~ scale was veri-
fied with use of the elastic peak energy deter-
mined in the (coincidence) elastic-scattering ex-
per iment. '

The results can be discussed in terms of the
spectral function" S(k, Z) which is the combined
probability to find in the nucleus a nucleon of mo-
mentum R and separation energy Z. In the case
of 'He, S can be written

sg, z) = ((,'~ ~,t&(z —(&-z,))~, ~ (,')

(,~ and g,
' are the two- and three-body wave

functions, respectively; ag and ag are the cre-
ation and annihilation operators of nucleons with
momentum K. In the plane-wave impulse approxi-
mation the (e, e') cross section can be expressed
as

dvdQ
= Q„dk ~,„dzs„(~k q~j, z)5(-z ~+z„,+ z,),

where 0', & is the cross section for electron-nucle-
on scattering taken from elastic e-N scattering,
and E„, is the energy of the center of mass of
the two residual nucleons.

Equation (2) is correct only if the antisymmet-
rization between initial- and final-state wave func-
tion may be neglected. This is the case" if the
momentum transfer is larger than about twice the
Fermi momentum, a condition that is well ful-
filled by the present data. Using the plane-wave
Born approximation also requires that the effect
of the final-state interactions (FST) of the knocked
out nucleon is small enough to be reliably correct-
ed for. In an inclusive process, where the fate
of the recoil nucleon is disregarded, FSI are of
minor importance, in general. This is true in
particular for small A and for energies of the
knocked out nucleon (=v- ~,&) larger than ™30
MeV. Under these circumstances the influence
of FSI may be accounted for by incorporating an
effective momentum" for the nucleon determined
from an energy-dependent optical potential, "V.
The effective-momentum approach gives distor-

tion corrections to do'/d~dQ with an accuracy"
of + 25%.

Equation (2) is based on a fully relativistic
treatment of the e-N interaction. The bound-nu-
cleon distribution for the momenta & 2.5 fm '
come from a nonrelativistic wave function. This
approach is similar to the one of Atwood and
%est." The present q-u region does not warrant
the simplifications of the bound-state description
necessary for a fully relativistic treatment. "

The calculation of the QFS cross section was
performed using the spectral function of Dieper-
ink et al."derived from the Faddeev wave func-
tion calculated by Brandenburg, Kim, and Tubis. "
Both the Faddeev wave function and the two-body
wave function were obtained using the Reid soft-
core nucleon-nucleon interaction. For q& 5 fm '
the nucleon form-factor parametrization of Jans-
sens" et al. was used, while at larger q the scal-
ing (dipole) form factors'o were employed. The
resulting predictions for v(&u) are shown in Figs.
1 and 2. The uncertainty in the treatment of re-
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FIG. 2. Threshold inclusive cross sections for 0 = 8' compared with Q,FS calculation. Dashed line at 3.26 GeV is
the Faddeev calculation for V'= 0.75U; at larger energy it coincides with the solid curves.

spectral function.
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