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but it is possible to express the VAF in terms of
the single-particle nonequilibrium distribution
function. ' Ernst, Hauge, and van Leeuwen argue
that this single-particle nonequilibrium distribu-
tion function will take on the local equilibrium
form a sufficiently long time after a spontaneous
fluctuation occurs, and Pomeau and Resibois'
showed that this assumption follows from gener-

.al kinetic-theory arguments under "normal" cir-
cumstances for neutral-particle systems. Baus
and Wallenborn' noted that this assumption is
problematic for a plasma except when the binary
collision processes of the strongly coupled plas-

The Alder-Wainwright effect for the velocity autocorrelation function is small and dif-
ficult to observe in a system of neutral particles but is more prominent in a strongly
coupled plasma. The pure electron plasma recently produced by Malmberg and deGrassie
provides an opportunity to observe the Alder-Wainwright effect experimentally. We
speculate on the behavior of the velocity autocorrelation function for this system.

Alder and Wainwright' (AW) first observed an havior of the VAF and Varley' provided a Landau-
anomalous nonexponential "tail" in velocity auto- Placzek argument ~ la Ernst, Hauge, and van
correlation functions calculated from computer Leeuwen. ' These studies are of importance in
molecular dynamic studies of classical hard core their own right but in addition they provide a new
systems. They found empirically that the velocity system which manifests the AW mode-mode coup-
autocorrelation function (VAF) behaves asymptot- ling phenomena. Furthermore, in a strong ly
ically as t ""after several collision times where coupled plasma the AW effect for the velocity au-
d is the dimension of the system. One of several tocorrelation function becomes the dominant ef-
explanations of the long-time "tails" was provid- feet since there is no initial exponential decay. '
ed by Ernst, Hauge, and van Leeuwen utilizing The coupling of the plasma is usually given by the
the concept of local equilibrium and linearized dimensionless parameter I -=(Ze')/ah&T, where
hydrodynamics. Landau and Placzek' are often a = (3/4&p)-"' is the ion-sphere radius and strong
given credit for introducing these assumptions coupling is the regime where 1&F&155.
for the calculation of various correlation functions The production of a nonneutral plasma by Malm-
but certainly Ernst, Hauge, and van Leeuwen berg and deGrassie' provides an opportunity for
presented a novel application of the ideas that the the experimental observation of the AW effect in
result is unusual. a plasma and a recent investigation of Malmberg

The AW effect has proven difficult (but not im- and O' Neil' indicates that the strong-coupled re-
possible) to observe in the laboratory since the gime should be accessible. Here we describe the
velocity autocorrelation function for a fluid sys- results of a calculation of the VAF via a Landau-
tem of neutral particles falls exponentially initial- Placzek argument (a la Ernst, Hauge, and van

ly. After a few collision times the "long-time Leeuwen') for a. nonneutral plasma in a constant
tail" becomes evident, but by then the VAF is but external magnetic field which is appropriate to
a fraction of a percent of its initial value. Kim the experiment of Malmberg and deorassie.
and Matta utilizing latex spheres moving in a The velocity autocorrelation function CD(t) is
shock tube and Kim and Modla utilizing direct defined by
position measurement of a Brownian test particle N
illuminated with a laser beam have obtained some Co(t) = 11111

V
(V,„(t=0)V,„(t)),

(n,r~ ~)
success in experimentally discerning what is a
very small effect. The AW effect is of great im-
portance in the theoretical understanding of time
correlation functions even though experimentally
the effect is small for most circulstances in sys-
tems consisting of neutral particles. '

The one-component plasma system has recent-
ly attracted some interest. The computer molec-
ular-dynamics studies of Hansen, McDonald, and
Pollock' revealed a velocity autocorrelation for
a strongly coupled plasma which osci].lates at the
plasma frequency and decays as t ~" in the man-
ner of AW. Subsequently Gould and Mazenko'
provided a kinetic-theory explanation for the be-

1979 The American Physical Society 1113



VOLUME 43, +UMBER 15 PHYSICAL REVIEW LETTERS 8 OcTQBER 1979

ma dominate the mean-field, Vlasov processes,
and thereby enforce local equilibrium. The local
equilibrium distribution' is a functional of the lo-
cal density n(r, t), velocity v(r, t), and tempera-
ture T(r, t), and it seems reasonable to assume
that the time evolution of these hydrodynamic
quantities is determined by the usual linearized

!
magnetohydrodynamic (MHD) equations in an ex-

mn(r, t)[&/&t+v(r, t ) ~ V]v(r, t) =-Vp(r, t)+V ~ II

where p(r, t) is the pressure, B, is a magnetic
field produced by external sources, and B,(r) is
the self-magnetic field produced by currents in-
side the plasma. The electric field E(r, t) is de-
termined from the density through the Gauss law
V ~ E(r, t) = 4mqn(r, t) where in the case of the pure
electron plasma q = -e where e is the charge on
an electron. We will be considering the case of
a strong, uniform external field B, and we will
neglect the diamagnetic field B,(r) since it is
small in comparison with 8, for the strongly
coupled (low temperature) plasma. The general
form of 'the viscous stress tensor II(r, t) for a
nonisotropic system with a pref erred direction
(the direction of B,) is given by Braginskii in a
form applicable to both the strong- and weak-
coupled plasma provided one does not utilize the
specific values for the viscosities he provides
for the weak-coupled domain. Finally, since we
are considering a strongly coupled plasma (with
low temperature) we neglect the heat equation
and all temperature fluctuations.

The above hydrodynamic description is applic-
able to the inertial, laboratory frame of the ex-
periment. It proves convenient to write the hy-
drodynamic equatians in a noninertial, rotating
frame with use of the Coriolis theorem' since the
electrons of the pure electron plasma must have
a rotational motion to provide stability to the sys-
tem. "We then proceed to write the density as
n(r, t) =n, (r, t)+5n(r, t), the velocity as v(r, t)
=v, (r, t)+hv(r, t), the electric field as E(r, t)
= E,(r, t)+5E(r, t), and the pressure as p(r, t)
=p, (r, t)+hp(r, t), where we have separated the

ternal field. ' [The calculation of CD(t) requires
us to consider the local equilibrium distribution
with n(r, t) replaced by P(r, t) the test-particle
probability density; see Ernst, Hauge, and van
I eeuwen' in this regard. ] Specifically, we util-
ize the continuity equation

[&n(r, t)/&t]+V ~ (n(r, t )v(r, t )j=0

and the Navier-Stokes equation in the form

(r, t) +qn(r, t)E(r, t) + (q/c)n(r, t)v(r, t)x (8,+ B,(r) j,

! steady, nonfluctuating zeroth-order parts of the
hydrodynamic quantities from their fluctuating
parts. Substitution of the above into the Navier-
Stokes equation in the rotating frame leads (in the
zeroth order) to a force-balance equation. We
then choose the angular velocity & of the rotating
frame so that the v, (r, t) of the electron fluid van-
ishes in the rotating frame. There is thus no vis-
cous term in this order and the pressure term is
negligible. " The force-balance equation yields
two possible angular velocities ~,' for which an
equilibrium exists. " We assume an experiment
where the density n, is constant out to some radi-
us and consider the case of a strong external field
B, so that w,

' is approximately the gyrofrequency
0, =eB,/m, c and v, becomes approximately
—cE,/rB„a much slower "drift" angular veloc-
ity mode. The thermal gyroradius associated
with u),

' is much smaller than the interparticle
spacing in a strongly coupled plasma so that the
dominant collective motion which maintains sta-
bility in a pure electron plasma must be the slow-
er "drift" mode z, .

We then proceed to the solution of the first-or-
der MHD equations for the fluctuating quantities.
Terms of second order in fluctuations are neglect-
ed and since the rotating frame was chosen so
that v, =0 there is no contribution from the con-
vective terms. The Coriolis term is negligible
in comparison with the strong external field Bp.
Thus the Navier-Stokes equation for the fluctuat-
ing hydrodynamical quantities appears in the ro-
tating frame as"

s5v(k, t)/st = —t(1/no m, Kz,)k5n(k, t) —vk'&v(k, t) —(e/m, )5E(k, t) —(e/m, c)6v(k, t)x B,.
In obtaining the above equation, we have per-
formed a spatial Fourier transform as a prelim-
inary in solution. Also, we have utilized a sim-
plified expression for the viscosity, retaining on-
ly the shear viscosity v which dominates. The
electric field satisfies the Gauss law t[k ~ 6E(k, t)]

! = -4me5n(k, t) and the continuity equation takes
the form

Finally, the test-particle density P(k, t) satisfies
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a simple diffusion equation of the form aP(k, t)/
Bt = -Dk'P(k, t) in the frame rotating with respect
to the laboratory.

Utilization of the local-equilibrium form of the
Maxwellian distribution" in the rotating frame
together with the solutions to the first-order lin-
earized MHD equations described above yields
C~(t) =t '(K, +K, c os(~t+y)] as the asymptotic
form for the VAF in a strongly coupled, two-di-
mensional plasma immersed in a strong, uniform
magnetic field which is perpendicular to the plane
of motion. We give the above result for CD(t) in
the frame rotating with respect to the laboratory
with a constant angular velocity v, as described
previously. We give CD(t) in the rotating frame
since the physical interpretation of the processes
contributing to the behavior of CD(t) are more
easily understood there than in the laboratory
frame where the actual experiments are per-
formed. The above result for C~(t) reduces to
our previous result' for the unmagnetized case
in the appropriate limit, and that result for CD(t)
is in substantial agreement with the data of Ref.
5 beyond a short time (a small fraction of a plas-
ma period) after the fluctuation occurs. The mag-
netic field modifies the oscillation frequency 9 of
C~ (t ) to v = (0,'+ v~') '", where &u~

= (4me'n, /m, )'"
is the plasma frequency and 0, =eB/m, c is the
gyrofrequency. K, and K, are constants given in
terms of the transport coefficients by

K, = j8m pm v(1+ D/b, )j

K, = 2A, /(Bn'Pmv[(b, , + D)'+ a '])
where b, , = (v/~')(0'++~'/2), h, =(veau~'v'), and

6,= (1/2&upKr ). The phase angle p is given by
cp = tan '[b,/(b, , +D)]. The three-dimensional
problem is considerably more complicated but
we expect the oscillatory behavior of the velocity
autocorrelation function to persist in three dimen-
sions for motion transverse to the external mag-
netic field and the decay to be modified to t ' '.

The physical picture corresponding to our ve-
locity autocorrelation function is revealing. The
VAF requires us to focus on the decay of the x
component of the velocity of the Brownian particle
as it interacts with the electrons of the medium.
The movement of a Brownian particle is produced
by relatively large-scale fluctuations in density
and velocity of the medium. Once in motion, the
Brownian particle in turn produces hydrodynamic
fluctuations in the medium which evolve accord-
ing to the equations of linearized MHD. It is the
effect of these induced hydrodynamic modes act-

ing back on the Brownian particle which is re-
sponsible for the nonclassical (nonexponential) de-
cay of CD(t) that we have calculated. There are
several separately discernible effects in this re-
action of the medium on the Brownian particle.
As in the case of a medium of neutral particles, "
a part of the transverse velocity (vortex) mode
provides an explanation for the power-law t ' as-
pect of the decay. The velocity of the Brownian
particle is also affected periodically by its inter-
action with the plasma oscillation which was ex-
cited with the initial motion of the Brownian par-
ticle." Superimposed on the medium plasma os-
cillation is the gyromotion of the electrons due to
the presence of the external magnetic field. The
net effect of the plasma oscillation and gyromo-
tion of the medium particles (electrons) is to
cause the x component of the velocity of the
Brownian particle to oscillate at the composite
frequency +. The final form we obtained for the
VAF is a consequence of coupling between the
self-diffusion mode of the Brownian particle and
the velocity mode of the medium just described.
We emphasize that the composite oscillation fre-
quency of the Brownian particle ~ is a conse-
quence of the effect of the motion of the medium
electrons on the Brownian particle (note that 0,
and ~~ depend upon the properties of the medium
electrons and do not depend upon the properties
of the Brownian particle).

A self-consistent calculation of the diffusion
coefficient utilizing the above result for the VAF
in the Green-Kubo formula yields a Bohm-like
dependence on the magnetic field. While the
theoretical foundations of such a self-consistent
calculation are somewhat tenuous, Krommes and
Oberman and others' working with the weakly
coupled, strongly magnetized plasma have found
good agreement between their results for the dif-
fusion coefficient and the computer molecular
dynamics results of Okuda and co-workers. '
Such agreement presents indirect evidence to sup-
port the assumption of local equilibrium as util-
ized here. Presumably, the magnetic field pro-
vides the necessary localization for making valid
both the assumptions of linearized MHD and local
equilibrium in the case of a weakly coupled plas-
ma. The strong-coupled nature of the plasma dis-
cussed here should enhance the localization effect
of the magnetic field, providing even more assur-
ance of the validity of these two I andau-Plaezek
assumptions.

In conclusion, the Landau-Placzek method
provides a result for the VAF more quickly than
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a kinetic-theory calculation and in addition it
provides physical insight into the relevant non-
equilibrium processes involved in the VAF. We
hope this calculation will encourage an experi-
mental measurement of the VAF and motivate
subsequent kinetic-theory and molecular-dynam-
ics calculations.
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