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The first evidence for SiH~-like centers in crystalline Si (c-Si) is presented from in-
frared measurements of H (D) imp1anted at 80 K. In contrast to SiH~ centers in amor-
phous Si (a-Si) which are stab1e to '=700 K, the crystalline band anneals below 300 K with
an activation energy and i11umination enhancement that are characteristic of the Si va-
cancy. These results relate specific defects for implanted H in c-Si to previous obser-
vations for H in a-Si.

Hydrogen bonds chemically in both crystalline
Si (c-Si)" and amorphous Si (a-Si)' and produces
significant changes in electrical properties. 4

There is, however, little understanding of struc-
tural changes which accompany hydrogenation of
Si. Understanding the relationships between
structural composition and chemical bonding of
hydrogen in Si is a necessary part of understand-
ing electrical properties of hydrogenated Si. Hy-
drogen implantation into c-Si at 300 K produces
a complex SiH stretch-frequency spectrum of at
least twelve infrared absorption bands. " Be-
cause these absorption bands have different an-
nealing characteristics, ' they represent dis-
crete SiH centers. However, since nuclear re-
action-channeling analysis' shows that a major
fraction of hydrogen implanted into c-Si at 300 K
occupies a well-defined crystalline interstitial
site, it was suggested'*' that the many SiH stretch
frequencies in implanted c-Si are associated with
different atomic-displacement-produced defects
surrounding a well-defined interstitial hydrogen
position within the crystalline lattice. In con-
trast to the many SiH bands produced by H im-
plantation into c-Si at 300 K, implantation into
a-Si yields a single broad band' which has been
assigned to the one-hydrogen (SiH, ) center. '

Reported herein are results obtained from
studies on SiH stretch frequencies for hydrogen
implanted into crystalline Si at low temperature.
From these results one can infer that low-tem-
perature. From these results one can infer that
low-temperature H implantation into c-Si pro-
duces Si-H bonding similar to the SiHy bonding
observed in a-Si. In addition, from the anneal-
ing studies reported here, one can relate the loss
of this band to the motion of the Si vacancy in c-
Si.

Hydrogen implantations of 6&&10" cm were
made at 50 and 100 kev at 80 K into both 0.63
&&1.27 cm2 faces of high-resistivity (111) sam-
ples of ~-type crucible-grown Si. The penetra-
tion depth for 100-keV hydrogen into Si is 1 p. m;
therefore, the average concentration within an
implanted layer is —1.2 && 10 H/cm'.

The solid trace in Fig. 1 shows the SiH absorp-
tion spectrum produced by H implantation into
c-Si at 80 K. This spectrum is much less com-
plex than that for implantation at 300 K. The
major SiH stretch frequency at 1990 cm ' ob-
served after low-temperature implantation of
hydrogen into' c-Si is essentially the same as
that for the SiH, centers produced by implantation
into a-Si at 300 K (dotted trace of Fig. 1). An
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FIG. 1. SiH stretch frequencies produced by hydrogen implantation into crystalline Si at 80 K {solid line), and af-
ter annealing at 200 K (dashed line). Also shown are results from hydrogen-implanted amorphous Si (dotted line) at
300 K. Absorption and atom fluences are expressed per implanted layer.

implantation of 100-keV deuterium into c-Si pro-
duced a similar center, but the stretch frequency
was shifted to 1440 cm ' as expected, because
of the mass difference between hydrogen and deu-
terium. Bombardment with He produced neither
the 1990-cm ' nor the 1440-cm ' band which
further confirms assignment of the 1990-cm '
band to an SiH center.

The peak absorption coefficient multiplied by
the full width at half maximum divided by the im-
planted H atoms/cm' is - 3 times la, rger for the
1990-cm band in c-Si than for the SiH, band in
a-Si. This difference indicates that hydrogen im-
planted into c-Si at 80 E is effectively trapped,
and the resultant SiH center has an even larger
oscillator strength that that for SiH, centers in
a-Si. The 1990-cm ' band in c-Si and a weaker
band at 1885 cm ' disappear upon annealing at
200 K while the intensities of bands at 1840 and
2060 cm ' increase. This annealing of the 1990-
cm ' band from c-Si at 200 K, as shown by the
dashed line in Fig. 1, contrasts sharply with the
SiH, band in a-Si which is stable to - 400'C.

To more fully characterize the annealing proc-
esses for the 1990-cm ' band, isothermal anneal-
ing measurements were made at 130, 140, 150,
and 160 K. An activation energy for the annealing
process was obtained by plotting the natural loga-
rithm of the time for one-half the centers to an-
neal versus inverse annealing temperature as

shown in Fig. 2. Absorption measurements were
made at 80 K after selected times at the anneal-
ing temperature. Also plotted in Fig. 2 are data
for neutral-vacancy annealing obtained by Wat-
kins' from EPR studies of pulled and float-zone
Si.

Because the activation energy of 0.34+ 0.03 eV
obtained in the present study agrees closely with
that obtained by Watkins for neutral-vacancy an-
nealing, ' one can infer that vacancy motion prob-
ably controls the annealing of the 1990-cm '
band. The shorter half-lives for vacancies in
pulled than in float-zone Si are explained by va-
cancy trapping at oxygen which is present in high-
er concentrations in pulled than in Qoat-zone Si.
Eon bombardment creates high concentrations of
sinks for mobile defects' which accounts for the
shorter half-lives observed in the present exper-
iment than for those in the EPR study of neutral
vacancy annealing in electron-bombarded c-Si.
Kinetics for vacancy annealing in the present
study are more complex than the first-order
kinetics reported by %atkins for randomly dis-
tributed vacancies produced by electron bombard-
ment. ' Such complex annealing kinetics are typi-
cal of defects produced by neutron and ion bom-
bardment of Si.'

Since vacancy annealing is charge-state depen-
dent, ' illumination with photons of E) 1.1 eV
should produce hole-electron pairs and the re-
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FIG. 2. Activation energy for annealing of the 1990-
cm SiH band in crystalline Si (solid line), and for an-
nealing of neutral vacancies {dashed lines, Watkins,
Ref. 8) in Si.

sultant negative charge state at 80 K for a frac-
tion of the vacancies should induce annealing. '
Indeed, 1-hr exposure of implanted layers to a
1-W filtered-output xenon lamp (Ezh,~„(3.9 eV)
produced 75% annealing of the 1990-cm ' band.
The sample-block temperature increased by 3 K
during illumination. This temperature increase
is insufficient to cause annealing of neutral va-
cancies, and the temperature difference between
the two sides of the sample resulting from the en-
ergy input on one surface was estimated to be
(0.1 K. For additional assurance that annealing
is light induced rather than thermally induced,
the 1990-cm ' band was produced by implanting
only one surface at 80 K. The sample surface
opposite the implanted layer was exposed for 1 hr
to illumination from the xenon lamp. In this case
the unimplanted side of the sample acted as a
band-gap filter, and no annealing occurred with-
in an experimental uncertainty of 10%%uo. The sam-
ple was then rotated to expose the implanted lay-
er to illumination and annealing was observed.
Thus, both the thermally induced and photoin-
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duced annealings of the 1990-cm '-SiH band in
c-Si correspond to a vacancy-controlled mecha-
nism and demonstrate interaction between SiH
centers and vacancies in Si. Vacancy motion,
which is a characteristic of c-Si, is also evi-
dence that the implanted layer remains crystal-
line.

Four possibilities have been considered to ex-
plain changes in the SiH-defect centers induced
by annealing, under tacit assumptions that a de-
fect is required for the chemical trapping of hy-
drogen in Si and that the SiH center itself is im-
mobile: (a) motion of vacancies away from SiH-
vacancy centers; (b) motion of free vacancies
to SiH-vacancy centers; (c) motion of free va-
cancies to SiH-interstitial Si centers; and (d) mo-
tion of vacancies away from SiH-vacancy clus-
ters. Explanation (d) is favored over the other
three primarily because EPB studies by Brower"
on low-temperature neutron-irradiated Si showed
the formation of distorted four-vacancy centers
(clusters) rather than isolated vacancies. The
hypothesis that hydrogen is trapped at vacancy
clusters in c-Si after low-temperature implanta-
tion is supported by the similarity of the SiH fre-
quency in this material to the SiH, frequency for
hydrogen associated with voids in a-Si.

In summary the results obtained in the present
study demonstrate interactions between vacancies
and SiH centers in c-Si, and relate an SiH center
in c-Si to SiH, centers in a-Si. Additional stud-
ies such as EPR and channeling/backscattering
are needed to further delineate the SiH centers
responsible for the 1990-cm ' band in c-Si.
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High-resolution heat-pulse experiments reveal that transverse, ballistic phonons in
Ge are focused into sharply defined beams along the l. 0011 and I. 1101 axes. Angular dis-
tributions within these beams display fine-structure representing focusing singularities.
It is shown that these features are dependent in a sensitive way on the topology of the
phonon- frequency surface.

In pure crystalline dielectric solids at low tem-
peratures the propagation of high-frequency acous-
tic phonons is ballistic in nature. Elastic anisot-
ropy of the solid imparts directional character-
istics to the bassistic propagation --an effect
called "phonon focusing. "" In a heat-pulse ex-
periment in Ge distinguished by high angular res-
olution and wide angular coverage we have dis-
covered a number of remarkable features in the
focusing patterns quite unlike anything reported
heretofore, viz: (1) the transverse acoustical
(TA) phonons preferentially radiate in very strong,
but narrow (a few degrees width) and sharply de-
fined beams centered on the crystallographic ax-
es [001j and [110]; (2) within these focusing
"cones" there appear even, sharper spikes repre-
senting focusing singularities. In this Letter we
show that these observations lead to new insights
into the physics of phonon propagation. Besides
their obvious relevance to phonon optics, high-
frequency phonon generation and propagation,
Kapitza resistance, ' and low-temperature ther-
mal conductivity, ' these developments are partic-
ularly timely since it appears that the strong di-
rectionality of phonon focusing is partly respon-
sible (via the phonon wind mechanisms'7) for the
highly anisotropic shape of the electron-hole drop-
let cloud, a matter currently being investigated
intensively.

Basically, phonon focusing, the concentration
of phonon flux along certain directions, depends

upon the fact that in anisotropic medium the di-
rection of energy propagation, given by the group
velocity vector v„does not necessarily coincide
with the phase velocity v, a vector parallel to
the phonon wave vector k. Since the direction of
v, is given by the normal to the constant-frequen-
cy surface (to surface), focusing will arise when,
as a result of elastic anisotropy, the surface de-
parts from a spherical shape —an extreme but
simple example being a cube for which phonon in-
tensity is finite only for directions parallel to
the cubic axes and zero otherwise. Obviously fo-
cusing effects will be quite sensitive to details of
the z surface as we shall demonstrate.

The experiments were performed in liquid He II
at - 1.8 K and can be visualized from the inset in
Fig. 1. The sample, in the shape of a hemicylin-
der, can be rotated about its axis by means of a
shaft connected to a goniometer at the top of the
cryostat. Heat pulses are generated optically by
a Q-switched yttrium aluminum garnet laser
(pulse width 150 nsec) beam focused on the cyl-
indrical surface which is cylindrical surface
which is coated with an evaporated Constantan
film. Power densities were kept low, = 1 W/mm',
to avoid formation of a hot spot. ' The detector is
a thin-film granular Al superconducting bolom-
eter in the form of a narrow stripe aligned with

the axis of rotation. Its dimensions, 0.1 mm
wide by 1.0 mm long, define the overall angular
resolution for the experiment: + 2.9' in vertical
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