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properties of an Associative Algebra of Tensor Fields. Duality and Dirac Identities
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An algebra of forms in Minkowski space has been constructed. A multiplication between
forms is defined as an extension of the quaternionic multiplications. The algebra ob-
tained is associative with respect to this multiplication of order 16. Duality is expressed
as (new) multiplication by a basis element. Vector identities in the algebra lead to a num-

ber of new trace identities. A new derivative operator expresses the four Maxwell equa-
tions in an especially transparent form.

Many contemporary studies are concerned with the construction of an appropriate algebraic frame-
work for theoretical physics especially particle physics (see Horwitz and Biedenharn for an impres-
sive effort and an extensive bibliography). The purpose of this paper is to present some new algebraic
structures, an algebra, ring, and a group, which allow an alternative and convenient formulation of
many laws and equations of physics. The advantages of this formulation are both conceptual and mani-
pulatory; on the former level interesting and important physical notions are described naturally and
compactly, while in the latter computational simplifications result from the formulation. It is reason-
able to hope that such new formulations will yield new insights.

In this note, the construction of the algebra is briefly outlined; as an example of the conceptual util-
ity, the duality notion is formulated, and as an example of the manipulatory uses, several new identi-
ties involving Dirac matrices are obtained. As a by-product, representations are obtained of many
groups and algebras important in physics. No proofs are given here; rather, the results are stated
and the basic logic is outlined. '

Consider a Minkowski space with metric g""=(-1,—1, -1,+1) (x, y, z, =1, 2, 3; t=4). Let o" (p, =1, 2,
3, 4) be the differential one-forms in that space. Using the exterior product w„construct the 16 basis
forms f& j, a=1, .. . , 16:

1, 0'", g" n 0", 0 I' n, cr" P 0 ~, o' w o' n, o' n a' = ~, p, g v, p. w v g p.

Although the exterior multiplication is associative, the basis forms f&„jdo not form a group. (There
is no inverse. ) One can construct a ring by considering expressions such as pc& jf«j, where the cL. j
are real scalars. The one-forms o" in the Minkowski space also allow an inner product (o", o") =g "",
where g"' again is the metric. The central point of this paper is the definition of a "new" multiplica-
tion (also called "vee" multiplication) between forms. For two one-forms this multiplication, symbol-
ized by o" v o', is given as

o~y o'= g&n 0'+g&". (2)
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For n such one-forms, the definition reads

gPl y g"2 ~ ~ ~ Vg / = P P( ]) g PlP2g P3P4. . . tP2k 1P-2kgP2k+1. ..gPn
0=0 P

(3)

Here (—1) is the signature of the permutation'

It follows that the vee product between n one-forms is a linear combination of wedge products of rank
n, n —2, ... . Thus the vee product is an element of the ring. It follows trivally from the definition
(2) that (again for a Minkowski metric) g" v g'= g" Ag', pg(t and gPk gP=gPP (no sum). Consequently,
the basis f(l), (1), could equally well be written in terms of the vee multiplication as

f -=(I g" g" Vg" g" Vg' Vg g' Vg Vg V g =(4)}, P. 41V, P, ntltntP.

The ring R(1, 3) is defined as the set pc(),& f(1&, with cl scalars. It contains sums of differential
forms of unequal rank. Clearly the vee product between (any riumber of) one-forms is an element of
R(l, 3). Two important results will be noted here: (1) The multiplication is associative. (This can be
directly verified from the definitions. ) (2) The (16) basic forms f& &, (4), define a multiPlicative
group, called G(1, 3) with the vee (v) multiplications as group operation. (This can also be verified
from the definitions but it is better to exploit the duality notion. ) It is interesting and a little surpris-
ing that the vee multiplication confers this group structure on the forms f«&. It should be stressed
that R(1, 3) is not a division ring; a sum of forms of unequal rank which occur in R(l, 3) has no inverse
in R(1, 3). However, R(1, 3) is "sectionally divisible, "each form of definite rank possessing an inverse
in G(l, 3).

In a four-dimensional space such as the Minkowski space the maximum rank of a wedge product is
four. This is not true for the vee product. This circumstance leads to a simplification for the vee
product of n factors:

gPl y gP2 y y gPn=p ( 1)& gP1P2, gPn lPn-
P

+p( I)P gP1 p gP2gP3 P4, gPn-1Pn +p( I)P(4)6 P P2P ) gP5I 5 ' ' 'gPn lPtt (6a)

Equation (5a) holds for n even; the sums are over all the permutations of the indices y.„.. . , p,„.For
n odd the corresponding formula is

gP1 y gP2 y ~ ~ ~ y gPn =P( ])&gPlgP2P3, gPn-1P 4+n(-1)3'gPlp gP2 A g3Pg 4P5P, , gl n-1Pn (6b)

The contact with physics is established by constructing an associative algebra of tensor fields, called
A(1, 3).' A general element of A(1, 3) is

ot=E{0)4-pF(1)PgP+ p E(2)+gP vg + p E(3) g v g y g +E(4)(tl
P2& P2&op

(6)

(7)

Here the E's are the contravariant scalar, )(ector, and antisymmetric tensor components of rank 2, 3,
and 4 in the Minkowski space. The E s are the quantities satisfying physical field equations. (For
example, an entity of the type of E(»P' occurs in the Maxwell equations. ) Thus the E's could depend
on space-time coordinates, and possibly on internal coordinates (isospin). The collection of 16 com-
ponents (E„F(»P, F(» ~, E(,)

~P, E(,) j defines the field alternatively as a vector in the vector space of
fields. (This has a striking similarity to a superfield 4, expanded as 16 components on a Grassmann
basis 1) It is finally convenient to define tensor tyPes E(~) of rank K by E, =scalar, E(»=E(» "g"
(vector), E(,)

=E(2)P'gP vg" =tensor or bivector, E(3) -—E(,)
~PgP v g" vgP =pseudovector, E(4) =F«)(lt

pseudoscalar. A general element n in A(1, 3) can then be written as

n =&(„)S„I'(,)
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where the S„arenumbers, o. in general has 16 components. Vfith use of the vee multiplication a
the algebraic properties of A(1, 3) can be determined. Most important is the observation that this is
an associative algebra of order 16. The vee multiplication of forms in g(1, 3) implies an associative
multiPlication on the vector syace of fields. One can also introduce a scalar norm PP(a) =So(~ v ~)
where Sc(x) means the scalar part of x. However, the algebra A(1, 3) is not a normed algebra; pp(~)
& (P) doss not sg«f & (o'v P), nor it is a division algebra. Hence, this associative algebra of order
16 doe& not contradict the Hurwitz-Albert-Frobenius classification theorems, which exclude associa-
tive algebras of order &4, since these theorems assume that the algebras are either normed or are
division algebras.

In the discussion of differential forms, the notion of the dual plays an important role. Similarly in
Maxwell theory and Yang-Mills theory, the dual of a field is of special significance. It is therefore
important that this dual notion can be expressed directly in terms of the algebraic structure developed.
Specifically, if A. is a p-form (in the Minkowski space), the dual A. is a (4-p)-form, given by

g~= (-1)'+~&~"l t'u&X~, with X~= (-1)~ "X (8)

From (8), the dual of any tensor type follows directly. A great computational simplification results
from the recognition that the basis of forms of A(1, 3) can be. expressed in terms of the (one-forms)
four- and three-dimensional duals of those one-forms and two-forms. Thus a simple (canonical) rep-
resentation can be given for the elements of A(1, 3) in terms of the scalar, vector, and tensor (bivec-
tor) types and their duals. With use of these decompositions it is easy to show that there can not exist
a self-dual (bivector) tensor field in Minkowski space-time. [This proof is specific to tensor fields
in Minkowski space-time; self-dual tensor fields could (and do) exist in a Euclidean space-time. ]

The following result indicates the manipulatory power of these algebraic methods. Let a =a "a" be a
vector type (or tensor type 1) a" is a contravariant vector in Minkowski space); then the formulas (5a)
and (5b) lead immediately (for even n) to

a, v a2y ~ ~ ~ y a„=g(-1)~(a,.a~) ~ ~ ~ (a„,a„)+P(—1)~a, A (a, a~ a~) ~ ~ ~ (a„,a„)
+ ~Q (-1)~[a,a,a,a, ] (a, a,) ~ ~ ~ (a„,a„). (g)

Here [a,a,a,a, ]=a, "'a, "'a, "'a~"4e"'"»»4 and (a, a,) =g„a»a, ", the usual scalar product of two vectors
in the Minkowski space.

The relationship between the present algebra (group) and the Dirac algebra may be inferred from
these theorems: (i) The group of forms G(3, 1) is a representation of the Majorana group M. [The
Majorana group is the group formed by real matrices ( p, = 1, . . . , 4) a 1, ~y&, +y "y", ay "y "y~, ay'y y~y4,
where the y satisfy the Dirac anticommutation relations. ] Clearly M has order 32. (ii) The group of
forms G(2, 3) is a representation of the Dirac group D=~+iiif, of order 84.

From these theorems it follows that any identities, or formal results for vectors a =a "v" in A(1, 3),
are valid for vectors g=-a&y in the Dirac algebra (a& is now indeed the covariant component). This
relationship transcribes to the connection formulas

Tr(g, ~ ~ g„)= 4Sc(a, v ~ v a„).
With use of the known properties of the new product (5b) this yields

Tr(g, ~ ~ ~ gf„)=4+~(-1) (a, ~ a,) ~ (a„,~ a„), n even;

Tr(g, ~ ~ ~ gf„)= 0, n odd.

Entirely parallel to these results one obtains

Tr(iy'g, ~ ~ g„)= 4 Sc(u& va, ~ ~ v a„),
which gives

Tr(iy'g, ~ tt„)= 4Q (- 1) [a,a,a~4](a, ~ a, ) ~ ~ ~ (a„,~ a„), n even;

Tr(iy'$, ~ ~ ~ g„)= 0, n odd.

(10a)

(10b)

(11a)

(11b)
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It is possible to show in A(l, 3) that (n odd)

a„va„,v ~ ~ ~ v a, = —a, v ~ ~ ~ v a„+2+(-1) a, (a, ~ a,) ~ ~ ~ (a„,~ a„).
This in the Dirac language yields

if„~~ ~ it, = —it, ~ ~ ~ i(„+2+(- 1) i(, (a, ~ a3) ~ ~ ~ (a„,~ a„).
Similarly, for n even,

8 =-6 '''i(, +r»(it '6 )+ y5»(y 6 @)

(12a)

(12b)

(13)

A host of other identities can be derived using this pattern; some are known (at least in special cases),
but others do not appear to be in the literature. For example, from the identity (n even)

4

P o" ya, ~ ~ ~ va„yo&=4+(-1) (a, a2)(a3 a~) ~ ~ (a„,~ a„)
/=1

—4&up(-1) [a,a2a,a,](a, a, ) ~ ~ ~ (a„,~ a„),
it follows that

(14a)

Z y"AL ~ if.y„=»(if'" if.)-y'»(y'if " 8 ).
P=l

(14b)

Although a comparable formula for n odd is known, (14b) appears new; it reduces to a known result
for the case n=4. (12b) and (13) appear entirely new.

Although strictly speaking outside of the scope of this paper it is interesting to mention that this for-
malism naturally leads to a derivative operator D. D acting on any form p is given by Dz = p v 8&p.
For example, DF,=D+„a'o"=8„a'(o"v cr"). In terms of this operator the four sourceless Maxwell
e{luations assume the elegant form DF, =O. It is easy to show that (Dv D)A = X, where is the d'Alem-
bert operator. Thus D factors in terms of the vee multiplication.

Further results, including the demonstration that the inner automorphisms of A(l, 3) leaving the vec-
tor type unchanged are just rotations and Lorentz transformations, will be published elsewhere.

Genuine extensions are needed to make the formalism useful in particle physics; the Minkowski
space needs to be generalized to a Riemann space, and internal degrees of freedom must be incorpo-
rated. The results announced here, apart from having an intrinsic interest, should provide a basis
for optimism that such an extension is possible.
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