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Using the Yvon-Born-Green equation of state for a square-well-potential fluid, we

have determined the critical exponent y, where &r ~ ~T —T, ~

& along the critical isochore,
to be 1.24+ 0.04. This nonclassical value is consistent with the best experimental and the-
oretical estimates of y and suggests strongly that a distribution-function theory with su-
perposition approximation can. correctly describe the equation-of-state behavior of a clas-
sical fluid in the vicinity of the single-component critical point,

It has never been demonstrated convincingly
that a description starting from an integral equa-
tion for the pair correlation function gi'l(r) de-
scribes interparticle spatial correlations with
sufficient accuracy that the critical region of a
classical fluid is characterized correctly. In this
note, we report a calculation of the critical expo-
nent y for a single-component, square-well-po-
tential fluid as predicted by one realization of the
Bogoliubov Born G-reen K-irkwoo-d Yvon (B-BGKY)
formulation, namely the Yvon-Born-Green (YBG)
equation for the pair correlation function g"~(r)
with the Kirkwood superposition approximation.

Although it is unrealistic to expect that a three-
parameter potential function as simple as the
square-well potential can describe the subtleties
of intermolecular interactions, it is nonetheless
believed, as odom stated' that, "what matters
is not the quantitative accuracy of (the intermo-
lecular potential) p(r) but rather the qualitative
accuracy of the resulting spatial correlations of
molecular positions. " %idom predicted that use
of an intermolecular potential such as the square
well within a proper statistical-mechanical frarne-
work "would undoubtedly result [in] an essentially
correct description of aH the macroscopic prop-
erties of matter throughout a vast region of the
P-T plane, including the neighborhoods of the
triple and critical points. " Luks and Kozak' and
the study presented by Co, Luks, and Kozak' ap-
pear to support these contentions.

In a more recent article, Levelt Sengers, Hock-
en, and Sengers4 discuss the large-scale fluctua-
tions of the order parameter p —p, near the criti-
cal point and state that "because the fluctuations
extend over regions containing many particles,
the details of the particle interaction are irrele-
vant. " A striking demonstration in support of

this view is offered by the results of the three-
dimensional (3D) Ising and other related models
representing lattice systems.

Consider now the critical behavior of the square-
well-potential fluid. Alder, Young, and Mark'
exhaustively studied the molecular dynamics of
a system of 512 square-well-potential particles
in the vicinity of the critical point and found the
critical exponents to be distinctly classical. How-

ever, the unit cell in this system is "small" in
that from its center it measures roughly four
molecules (or about four molecular diameters)
to its boundary, and most likely the resulting
classical exponents can be attributed to the re-
stricted range in the unit cell over which corre-
lations can propagate. On the other hand, the
study of Co, Kozak, and Luks' examined the be-
havior of g"~(x) (where x =r/o, and e, is a mo-
lecular diameter) out to x = 15, at which point in-
terparticle correlations were assumed to be ran-
domized, i.e. , g"&(x) = 1 at x &x~= 15. Some
nonclassical behavior was observed.

More specifically, the values of y, P, and 5
were found to fall between the classical values
and the generally accepted experimental values.
The latter result is interesting in light of an argu-
ment presented by Levelt Sengers, Hocken, and

Sengers, 4 in which it is pointed out that because
of gravitational forces, the correlation length in
a classical fluid would not become much larger
than 10 ' mm; in the above notation, this corre-
lation length corresponds to a value of about x,

„

= 3000. It follows that there are enough mole-
cules present in a spatial sample measuring
4mx, „'/3, where x,„=15, for nonclassical be-
havior to begin to manifest itself, and further it
suggests that if the down-range behavior of the
pair correlation function were precisely charac-
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terized, one might be able to determine the de-
gree to which nonclassical critical behavior is
exhibited by the YBG equation for the classical,
square-well-potential fluid. Thus we are led to
the seminal question: How accurately does the
YBG equation with superposition approximation
describe spatial correlations in the vicinity of
the critical point'P

We decided to study the behavior of g~'~(x) along
the critical isochore specified by the reduced den-
sity X„=4mno,'=4.6, where n is the number of
molecules per cubic centimeter. This value was
determined by Co, Kozak, and I uks, ' who also
established that 8„=e/kT, =0.3'l43 in their study.
They determined y to be about 1.09, where

~,~[7' TJ &

Z, = 1+&,f "[g"~(x) —1jx'dx.

Incidentally, the use of the compressibility equa-
tion, as opposed to the virial theorem, is abso-
lutely crucial here. The virial theorem, when
used in conjunction with functions g"~(x) for the
square-unwell-Potential fluid, collapses to an ex-
pression in which only the short-range behavior
of the g ' (x) is sampled. On the other hand, the
compressibility representation for the pressure
of a square-well-potential fluid incorporates in-
formation on the down-range behavior of the func-
tion g '~(x). Thus, in delineating the coexistence
region, where these down-range correlations are
of the highest importance, the compressibility
expression is expected to be the more appropri-
ate equation. It is for this reason that the com-
pressibility equation alone has been used in re-
cent years for studies on the square-well-poten-
tial fluid.

Several refinements are made in our present
computations in comparison to these of Ref. 6:

(1) x is extended to whatever value is needed
to allow g~' (x) to attain 1.000 000+ 10 ' at long
range.

(2) The convergence criteria placed ong~'~(x)
in the YBG equation is more stringent. Conver-
gence is assumed to be achieved when differences
between g~')(x) at all x between successive itera-
tions is 10 ', as compared to the 10 used in
Ref. 6.

(3) The value of 8, is reestimated from these
new g~' (x) data, since the location of 8, directly
affects the value determined for y.

(The square-well parameter R = 1.85, where R
= o,/o, is a parameter denoting well width, was

TABLE I. x~~, range of g( &(x), and &z as a func-
tion of 0 for the YBG square-well-potential fluid at ~()
=4.6 with B= 1.85.

xmax Range

0.819
0.829
0.889
0.849
0.859
0.866
o.s68'
0.369
0.870'
0.871

15
15
20
20
80
40
40
40
45
50

10.85
11.90
15.65
18.80
21.40
29.90
84.55
87.05
40..85
44.25

1.76 + 0.02
2.21 + 0.03
2.96+ 0.01
4.43 + 0.01
8.29 ~ 0.01

19.M + 0.01
28.46+ 0.04
86.07+ 0.01
47.77 + 0.05
66.50+ O.O5b

'g( ~(x) at these 8 were calculated twice using two
different starting guesses for g&~)(x), obtained respec-
tively from higher and lower values of 8.

This value of Ez appears low despite its apparent
convergence accuracy. This could be due to an accum-
ulation of roundoff contributions at large x.

maintained in order to preserve internal consis-
tency with our earlier study. ') Refinements 1 and
2 above have a direct bearing on the value of ET,
as at long range g"~(x) —1 is a small number of
0 (10 ' to 10 ') and is weighted by x'. Notice
that any inaccuracy in g~')(x) —1, or an approxi-
mation such asg('~(x)—= 1, would be magnified by
this factor x'. All computer computations were
performed at single precision and thus our pre-
cision is probably beginning to be affected by
roundoff as x-x

Table I lists, as a function of 0, the value of
x ~, the value of x where g~"(x) = 1.000 000+ 10 ',
and the value of R~ along with its uncertainty.
Again, the uncertainty in Er is larger than in
g~'~(x) because g'(x) —1 is weighted by x', i.e. ,
computer roundoff contributions can conceivably
affect the value of E~. We feel, for instance,
that the value of E~ at I9 = 0.371 might be low by
as much as 3% as a result of computer roundoff,
even though the above-stated convergences on
g~')(x) were met. Note that, at two values of 8,
different starting solutions for g(' (x) were used
so that the converged g"~(x) was approached from
two different directions. For example, to deter-
mine g '~(x) at 8= 0.368, initial input of converged
results at 0= 0.366 and 8 = 0.369 were employed
in separate generations of the g '&(x) function at
8 = 0.368.

Using the values of R~ in Table I, a plot of E~ '
vs 8 was made to determine anew value of 19,
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(where l(E~-0), since it is important in a study
of this kind to pin down the location of the critical
point with great care. It was found that 8,= 0.3741
to four significant figures, a value slightly less
than the value we reported (8,= 0.3743) in the cal-
culation' for which x~,„wastaken as 15. It should
be stressed that in this manuscript 0, was found
by using K~ information. In Refs. 6 and 2 it was
found by a dif fer ent approach —that of stability
analysis. It is both encouraging and interesting
that the two approaches yield quite similar val-
ues of 8, .

Using this new value of O„ywas determined
from a log-log plot of K vs (8, —8)/88„ the lat-
ter quantity being directly proportional to T —T,.
Taking into account the uncertainties in the E~
values and ~, and allowing for error in the graph-
ical determination of y, a value of y = 1.24+ 0.04
was found. %e remark that in Refs. 6 and 2 we
assigned a value and uncertainty to y of 1.09
+ 0.02. This number, along with its uncertainty,
was based on the best computations of g(x) that
we had made up to that time for a given trunca-
tion in the range of integration of the YBG equa-
tion. In the present study, it was decided to ex-
tend the range x of integration of the YBG equa-
tion in order to determine better the down-range
behavior and improve the computational accuracy
of the functions g(x) generated. The consequence
was that more reliable and accurate g(x) data
were obtained in a region much closer to the crit-
ical point, and the use of these data led to the
value of y = 1.24+ 0.04 reported in the manuscript.
With these highly accurate g(x), the (very sensi-
tive) function K~ could be determined at several
e to the accuracies states in Table I. In turn, 9,
could be determined from K~ to an accuracy of
+ 0.0001 as reported. The uncertainties reported
in both K~ and 0, led to our estimate of + 0.04 in

y, which we feel is a generous admission of un-
certainty. (That 8, and Kr have uncertainties of
comparable magnitude is coincidental. ) The val-
ue y = 1.24 + 0.04 spans the Ising-model result of
1.24 and the experimental value of 1.23+ 0.02 re-
ported by Chu'based on reliable existing data.
One can conclude that extension of x to values
as high as 50 takes into account the spatial cor-
relations needed to represent the nonclassical
behavior of the YBG equation of state. It appears
that the YBG equation with the Kirkwood super-
position approximation offers a most realistic
description of the long-ranged, interparticle cor-
relations which begin to dominate as one ap-
proaches the critical point.

A central question at this point, of course, is
whether an extended calculation of the other crit-
ical exponents would yield classical or nonclassi-
cal values. Our rationale for focusing initially
on the critical exponent y was that y is the eas-
iest exponent to obtain from the YBG equation;
moreover, its evaluation leads to a value of 8,
in the process. From a tactical (and logical)
point of view, the next exponent to evaluate would
be 6 (i.e. , 6~ and 6~), since a knowledge of 8,
and the critical density used to obtain y are now
available. The numerical evaluation of 5 is much
more difficult than that of y. g(x) is required in
the vicinity of the critical point, of course, but
the state points used to compute 5 are closer to
the two-phase coexistence region; thus, there
may be a need for values of x „even larger than
x ~= 50. (This might explain why in Ref. 6 6~
e 6~, i.e. , a poor result was obtained. ) Finally,
P (i.e. , P~ and P~) could be evaluated if one de-
termined the locus of the coexistence envelope.
It is important to emphasize that the determina-
tion of P reported in Ref. 6 was based not on the
above program but rather was obtained by imple-
menting the Kirkwood criterion assuming that the
locus on the lower bound of stability of the fluid
phase was coincident with the locus of the coex-
istence envelope; although theorems on the ex-
istence and uniqueness of solutions to nonlinear
integral equations suggest such a correspondence,
no formal proof establishing an exact equivalence
of these loci has even been given. In fact, a prin-
cipal motivation for undertaking the difficult nu-
merical program outlined above would be to clar-
ify the exact nature of the correspondence be-
tween these loci, and to check the earlier esti-
mates of 6 and P reported in Ref. 6.

The implications of the present study are of in-
terest in light of on-going analytic studies of the
distribution-function theories of statistical mech-
anics. For example, it is now known that phase
transitions are characterized by singularities in
certain thermodynamic functions that are other-
wise analytic. ' Moreover, it is the nature of the
singularity that determines the classical versus
nonclassical behavior of the critical exponents.
In studies based on the Ising model, for example,
the singularity is clearly expose5 and the atten-
dant critical exponents are well characterized.
In numerical studies based on integral equations
derived from the BBGKY hierarchy, the singu-
larity is disguised and its influence is felt in a
more subtle way; in particular, the structure of
the pair correlation function g~'~(x) changes as
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one enters the coexistence region. In the one-
phase gas regime, the g~')(x) function relaxes to
the mean density value after no more than a few
(vis. , x ('I) intermolecular diameters. On the
other hand, as one increases the density along a
given iostherm, g" (x) lifts off the mean-density
solution in a quite abrupt and dramatic way upon
entering the coexistence region, and remains dis-
tinctly different from the mean-density solution
even if the range of integration is extended to 50
intermolecular diameters (the present study). In
numerical studies based on an integral-equation
approach, this effect has been documented by sev-
eral groups over the last decade, and what we
have tried to do in this study is to perform our
numerical experiments with an accuracy which is
comparable to the best experimental studies. ' lf
one seeks an accuracy of 10 ' in the calculation
of g~'i(x) (the present study), the data show that
the YBG equation under the superposition approx-
imation yields a solution for g )(x) which is cer-
tainly not the uniform-density solution as one ap-
proaches the critical point, even when x~„is set
at 50. This behavior is, of course, monitored by
the function K~ whose behavior is represented in
Table I.

Although a main emphasis in contemporary the-
ories of phase transitions is on the characteriza-
tion of the underlying singularity, it should also
be recognized that a mathematical feature com-
mon to integral equations derived from the BBG-
KY hierarchy under the superposition closure is
the presence of nonlinearity, e.g. , the YBG equa-
tion for g(r) may be written as an integral equa-
tion of the Hammerstein type with an exponential
nonlinearity. The relationship between nonlinear-
ity and singularity in such theories is under ac-
tive investigation at the present time'" and the
precise determination of the critical exponent y
reported here reinforces the impression that uni-
versality at the level of a distribution-function ap-
proach to the theory of critical phenomena may
be linked to rather general conditions on the ex-
istence of solutions to the hierarchy equations.

Attempts have already been made to apply fixed-
point theorems and bifurcation theory to the non-
linear integral equations of statistical mechan-
ics,'' and the more recent theory of stable map-
pings and their singularities may provide a gen-
eral framework within which to explore this
point (see the remarks in Refs. 3 and 9).

The main conclusion to be drawn from this
study is that, if the calculation of g(x) from the
YBG theory is done meticulously enough, non-
classical results will occur. In addition to the
nonclassical value of y reported in this note, the
authors strongly feel that nonclassical values of
both 5 and P will occur also if these calculations
are done meticulously enough. Presumably this
implies as well that the corresponding gas and
liquid values of the exponents will not be unequal.
The quantitative confirmation of our belief that P
and 6 would be nonclassical will require a very
substantial effort.
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