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The high-frequency "convective" loss-cone mode in a mirror-confined plasma is shown to
be absolutely unstable as a result of wave reQection from the mirror throats, provided that
the plasma length is greater than an axial wavelength. Critical lengths for stability are only
a few ion gyroradii for fusion parameters, much smaller than previous estimates. This re-
sult places serious limitations on the design of mirror fusion reactors, and precludes the pos-
sibility of a linearly stable reactor with empty loss cone.

The high-frequency convective loss-cone
(HFCI C) mode was first considered in 1966 by
Post and Rosenbluth, ' who showed that it would
seriously limit plasma confinement in a magnetic
mirror machine more than a few hundred ion gy-
roradii in length, but that, in the absence of
wave reflection at the mirror throats, it would
not grow to significant levels in shorter ma-
chines. Since then, a number of possible reQec-
tion mechanisms have been considered. Aamodt
and Book' pointed out that even if the wave has
no turning points where k~~(z} = 0 (z being the axial
coordinate and AI~ the axial wave number in the
WKB approximation), there will still be a small
amount of reflection, of order exp(-k~~a), where
a is the scale length of the mirror throats. This
reQection can be interpreted as being due to the
slight corrections to the %KB approximation.
Equivalently it may be viewed as being due to
reQection of the wave from complex turning
points at which k ~~(z) = 0, where k ~~(z) has been
extended analytically into the complex z plane.
Since the wave grows by a factor of exp(- Imk ~~I.)
as it traverses the length of the machine (Imk~~
& 0 indicates growth), an absolute instability. will
occur if 1 imk~~lI &k~~a. Aamodt and Book' con-
sidered those modes with the highest convective
growth rates, viz. ~ = ~~,. and k,~D= j., and for

these modes limk ~~I «k~~, so absolute instability
does not occur, although the critical length is
somewhat reduced.

Other reflection mechanisms include nonlocal
wave reQection due to coherent bouncing of elec-
trons, ' and reQection from turning points due to
ion cyclotron resonances. ~ With any reQection
mechanism, the axial wavelength is reduced by
electromagnetic (finite P) effects, ' and this can
reduce the critical length. Taking all of these
effects into account, recent estimated' of the
critical length have been about 50 gyroradii, con-
siderably less than the original estimate, ' but
still quite tolerable for a mirror fusion reactor.

In this Letter, I consider only the reQection
mechanism discussed by Aamodt and Book.'
When longer-wavelength modes (k~XD «1, &o «re~,.)
are considered, then ImA, ~I-k~~, and absolute in-
stability occurs, even though the local convective
growth rates are lower than for the modes con-
sidered by Aamodt and Book.' The critical length
for these modes should be roughly one axial wave-
length. For fusion parameters and for the worst
modes, the critical length is only a few ion gyro-
radii. If the length of the mirror machine is less
than a few ion gyroradii, then the radius of the
plasma must also be less than a few ion gyro-
radii, and the plasma will be subject to the drift-
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cone instability, ' unless the loss cone is partly
filled in with warm plasma. Hence, any mirror-
fusion plasma with empty loss cone must be un-
stable.

I consider a Vlasov plasma with straight-line
ion orbits and strong1y magnetized electrons,
and assume electrostatic perturbations of fre-
quency ~ and perpendicular wave number k~.
This model is appropriate for 0,. «(d «0, and

Q,/v, »k~» Q,./v, , where Q, , Q„v„and e, are
the ion and electron cyc1otron frequencies and

thermal velocities; and ~~,'«k~'c'. I also as-
sume k~~U, « ~, so that electron (and ion) Landau
damping can be neglected, and k~»k!!, these
assumptions are justified later. The ions are
assumed to have perpendicular velocity distribu-
tion

f,(v,) =. v, 'exp( e,-'/v, .'),

appropriate to a 1oss-cone plasma. The Vlasov-
Poisson equation for the perturbed potential p(z)
is then

d ~„'(z) dy „, ~~, '(z)~
(1)dz (d dz kg v; A'gv;

where Z" is the second derivative of the Fried-Conte plasma dispersion function. ' For ~ «k~v, , Z "(co/

4~v,.) = -2m'~'i. For a definite model, I take &u~, '(z) =u&~„'z'/I, ' near the mirror throat, located at
z=o; here J is the scale length of the plasma, and +p p is ~p at the midplane. This z' dependence
is appropriate for a collisional ion distribution; a collisionless distribution would be even more un-
stable. Equation (1) may then be written in dimensionless form

d d@—S' —ice" ($'+iS 'e '6)4 =0
dS dS 0

where S=z/L, 4'(S—)=-y(z), o.=-2m'~2(m, /m;)(IcvI'I 2/k~~ ), S,'—= —,m '~2k~'~, '/Ical~~;, 2, and 8-=arge, i.e. ,
a& = I ~l e' . Equation (2) has three WKB turning points, at S =S, exp(- xi/6 —i8/3), and at e px(2mi/3)
and exp(- 2wi/3) times this value.

The global behavior of 4(S) may be seen by plotting the Stokes lines and anti-Stokes lines for Eq. (2).
Defining

K(~'(S)= —inc" [1+(iS,'/S')e ' ],
the %KB approximation to the potential is

4(S)= C, exp[+ if Kj~(S') dS']+ C, exp[- iJ K~~(S') dS'],

(3)

where C, and C, are constant within a given Stokes
region. " The pattern of Stokes lines (solid lines)
and anti-Stokes lines (dashed lines) is shown in
Fig. 1 for real positive v (i.e., 8= 0). A solution
which is purely left-going just to the right of the
origin (corresponding to complete absorption at
the mirror throat) will still be purely left-going
(at a lower amplitude) along the anti-Stokes line
going between the origin and the turning point at
S, exp(- ni/6), labeled S, in the figure. In the
vicinity of S„where k ~~'(S) = —3aS,'(S -S,)S, ~

and Eq. (2) may be approximated by Airy's equa-
tion, the solution must be

4(S)=Ai((3n/So)'~'exp(- 47ri/9)(S —Sg)), (4)

without any Bi component. Then the solution has
left-going and right-going components of equal
amplitude along the anti-Stokes line which origi-
nates at S, and goes up and to the right. Analy-
tically continuing the solution to the real axis,
we see that anywhere to the right of the point (la-

Im S ~
/

/

p
- ReS

FIG. l. Anti-Stokes lines (dashed) and Stokes lines
(so1id) for 0=0 (purely real ~).

! beled P) where this anti-Stokes line crosses the
real axis, the right-going component has greater
amplitude than the left-going component. In other
words, if a left-going wave with real frequency
+ is launched to the right of point P, it will re-
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L ))k 1/2v 3/2 I~I 3/2(~ /~ )&./2 (6)

This inequality simply states that the machine
must be longer than an axial wavelength, a result

turn as a right-going wave of greater amplitude.
To construct an unstable normal mode, assume

that the other mirror throat is far to the right of
point I', and let 8 be slightly less than 2/6 The
pattern of Stokes lines for this case is shown in
Fig. 2. The procedure for constructing a solution
with absorbing boundary conditions at the origin
is similar to the previous case, but with S,
= Soe '~. If 8 were exactly 7&/6, then the anti-
Stokes line going to the right from S, would be
asymptotically parallel to the real axis, remain-
ing below it. Because 0 is slightly less than 2/6,
the anti-Stokes line crosses the real axis at a
slight angle, far to the right of S&. If 9 is adjust-
ed so that the anti-Stokes line crosses the real
axis at the midplane, then this anti-Stokes line
will coincide with the anti-Stokes line originating
from the turning point S,' associated with the
other mirror throat. We will then have a normal
mode with Imago &0, i.e., an absolute instability,
whenever

J,'Kp(S) &fS =v(22+2), (5)

for integer n large enough so that the WEB ap-
proximation is valid.

Several assumptions have been made in con-
structing this unstable mode:

(A) It was assumed that the other mirror throat
(which occurs at S of order unity) is far to the
right of pointP in Fig. 1. This implies S,«1,
which means aoarp, ,'»k~'v, .'.

(B) The integer n appearing in Eq. (5) must be
much greater than unity for the WEB approxima-
tion to be valid. Since IS,.-S, I is of order unity,
and K3'(S) = a over most of the path of integra-
tion, according to Eq. (3), this implies &2'/2»1,
or

found previously by Berk, Pearlstein, and Cor-
dey. ~

(C) To neglect electromagnetic effects, &u~,
2

«k~'c is required in the vicinity of the turning
points. Since cup, '= ~p„'S,' in the vicinity of the
turning points, this implies e/k~v, »T,./m, c2.

(D) The straight-line ion-orbit approximation
requires ~ » 0,' and k~v,- » 0,.

(E) The electrons were assumed to be strongly
magnetized, implying ~«Q, and k~v, «Q, .

(F) The approximation 2"(ru/k~v, .) = —2m'/23

requires cu «k,v;.
(G) To neglect Landau damping, it is necessary

that k3«&u/v, everywhere between the turning
points. In the WEB approximation, k~~= K3/I,
and from Eq. (3), K~t ~ a' ' everywhere between
the turning points, so Landau damping can be
neglected if o&'/2«L, +/v„or &u /kiev, . «T&/T, .
[Note that Landau damping does take place in a
small region very close to the origin (IS I «S,)
even when this last condition is satisfied, and
this justifies the use of absorbing boundary con-
ditions at the origin. ]

In a mirror machine T,. &T„so that conditions
E and G are automatically satisfied if conditions
A and F are. In any fusion reactor T; &rn. ,c and
cop 'p» 0

g
so there will be some range of ~ and

k~ where A, C, D, and F are all satisfied. This
range is shown schematically in Fig. 3. Unstable
modes exist provided Eq. (6) is satisfied for some
value of ~ and k~ in this range. The right-hand
side of Eq. (6) is smallest in the upper right-hand
corner of this range, where conditions A and F
are both marginally satisfied, viz. , ~ = ~pfp and
k3 = ~&,;,/v;. The length needed for any mode to
be unstable may then be found from Eq. (6):

I, z (rn&/m, )'/2v&/(u~„=p, o, ja)„„ (7)

Im S

midplane

ReS
I

D c
I

p-I

FIG. 2. Anti-Stokes lines (dashed) and Stokes lines
(solid) for a normal mode; 0 is slightly less than ~//'6.

FIG. 3. The unstable region of the ~-k~ plane, where
conditions A, C, D, and F ar all satisfied (not drawn
to scale).
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where the ion gyroradius p, —= u;/0, . Since ~~„
&0, is necessary for an economical fusion reac-
tor, the critical length is on the order of an ion
gyroradius or less.

A number of ways to avoid this instability sug-
gest themselves, and have been examined. The
results are summarized here:

(1) As pointed out above, the worst modes
[those whose axial wavelength, given by the right-
hand side of Eq. (6), is shortest] have very high
frequency, ~ = ~~„and perpendicular wave num-
ber, A~XD~1; these modes may saturate non-
linearly at a low level, and be relatively harm-
less. The longer-wavelength modes (which might
be expected to be harmful to plasma confinement)
have much greater critical lengths for instability.
For ~=Q,- and k~p,. =1, the critical length would
be L/p, =(m,./m. ,)' '. Unfortunately, when finite-
P effects are included, ' the axial wavelength is
shortened by a factor of (1+co~,'/k~'c')'~', or
about P' '(m, /m, )' '(k~p, ) '. Since an economic
fusion reactor requires P not too much less than

unity, the critical length is l./p, = P
'~' = 1, even

for the modes with co=Q,. and k~p,. =1.
(2) Reflection can be reduced by plasma out-

side the mirror throats. If the plasma density
goes as &u~, '(z) = &@~«'(6+z'/I') around the mirror
throat at z = 0, then there will be significant
stabilization only when ~ = 1, i.e., when there is
almost as much plasma outside the mirror throats
as inside.

(3) Warm plasma in the loss cone will have a
stabilizing effect, but will not stabilize the worst
modes, which have cu/k~=v, , until the loss cone
is almost completely full.

(4) Even if Eq. (7) is accepted as an order of
magnitude estimate, there may be numerical fac-
tors which make the critical length considerably
greater than an ion gyroradius. To examine this
possibility, critical lengths have been determined
by numerically solving a differential equation
similar to Eq. (1), but including electromagnetic
effects, as well as the dependence of the ion
temperature and the magnetic field on z. For
parameters typical of a mirror fusion reactor
(T, =100 keV, P =0.6 at the midplane, mirror
ratio R = 3) the critical length was 17.2 p, , with
the worst mode having axial-mode number n = 1.

The HFCLC instability would not be expected
to be absolutely unstable in present mirror ex-
periments, such as 2XIIB. In 2XIIB, the radial

scale length is so small that the loss cone must
be almost completely filled with warm plasma to
avoid the drift-cone instability. Vfith the loss
cone filled, all loss-cone instabilities are stabil-
ized.

In future experiments and in proposed mirror
fusion reactors, the HFCLC instability should
be important. For the fusion reactor plasma con-
sidered above, absolute stability of these modes
with no warm plasma would require L, /p, & 17.2.
But this would imply a radial scale length A~ so
small (R~/p; 6 9) that the drift-cone mode would
be unstable. Thus a linearly stable fusion plasma
with empty loss cone is impossible. If R~/p; =9,
then 1% warm plasma will stabilize the drift-
cone mode. Hence a stable fusion plasma is pos-
sible if the loss cone is filled with 1% warm plas-
ma,

Requiring 1/o warm plasma puts severe, but not
impossible, constraints on the design of a mir-
ror fusion reactor. In particular, 1% warm plas-
ma might be tolerable if some kind of end stopper-
ing is used, and it might be tolerable in the end
cell of a tandem mirror reactor.
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