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Measured yields and energy distributions of H2+ emerging at 0' from the breakup of
2.2-Mev H3' in 1.5-7-pg/cm' carbon foils suggest that, in traversing a solM at the same
velocity, the lifetime for survival with the original electron is the same for H and H2 .
Seen for the first time is a reversal in the 0 intensity asymmetry between the leading and
trailing H~+ breakup fragments with changing target thickness which we interpret as the
result of competirg wake alignment and enhanced destruction mechanisms.

Recent studies" of neutral H atoms emerging
from very thin carbon foils bombarded with MeV
beams of H, H, ', and H, ' have suggested that an
electron can be bound to a fast moving proton in
solid and that such a system has a lifetime for
survival of (2.0+ 0.1)x 10 "s. ' In a further at-
tempt to understand the implications of such a
lifetime, we have studied the survival of H, '.
Like the H atom, H, ' has only one bound electron
of comparable binding energy but is presumably
more fragile because of the presence of lower-
energy dissociation channels. Rather than meas-
uring the transmission of an H, ' beam in solid
foils, we observed instead H, ' fragments from
the breakup of H, '. In so doing we shed addition-
al light on the H,

' breakup mechanisms as well
as on the specific effects on molecular fragments
caused by the perturbed electronic density behind
a moving ion. We report here the new observed

features.
In our measurements, a magnetically selected

2.2-MeV H,
' beam from a Van de Graaff acceler-

ator was collimated to a total angular divergence
of ~ 0.2 mrad before striking the target consist-
ing of carbon foils with thicknesses ranging from
1.5 to 7 pg/cm'. Fragments of H, ' emerging
within a 0.5-mrad cone centered in the beam di-
rection were detected by a high-resolution mag-
netic spectrometer (bZ/E = 2x 10 ').

Typical energy spectra of H,
' fragments emerg-

ing at 0 are displayed in Fig. 1 for three target
thicknesses. The two outer peaks correspond to
the trailing and leading H, ' fragments of the H3'
Coulomb explosions into H, '+H'. Noting that H, '
has a triangular shape, ' the H, ' here are con-
strained by the detection geometry to be those
whose internuclear axis is perpendicular to the
beam direction. A new feature which has hereto-
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verted data are not large.
In interpreting our data, we took note of the

fact' that the cross section for loss of a valence
electron is much larger than that for capture of
a target electron at the present velocity. For a
two-electron system like H,

+ penetrating into a
solid, we may expect that most of the H,

' are de-
stroyed in a time period short compared to the ta
sampled here. Thus the H, ' observed for short
tD are direct products of the H, ' destruction and,
implicitly, the electron attached to an H, ' is that
of an incident H, '. Other processes that can lead
to the formation of H,

' at emergence will involve
target electrons and are expected to become dom-
inant only at longer tD. Such an interpretation
seems to be a natural one if we are to simultane-
ously account for the large H, ' yield and the rela-
tive prominence of the central peak (in the 0
spectra) at short tD and the changing systematic
trend with tD exhibited by the H,

' yield in Fig.
2(b).

Looking first at Fig. 2(b), the steep slope cor-
responds to an e ' attenuation in a dwell time of
w, = (l.9',",) & 10 " s which, within the experimen-
tal errors, is the same as that observed' for the
transmission of H atoms. Although the observed
H, ' are actually fragments of H,

' breakup, the
slope nevertheless reflects the attenuation of H,

'
and is reminiscent of a radioactive decay in which
the lifetime of the parent (H, ') is much shorter
than that of the daughter (H, '). Interpreting the
slope as a lifetime for survival with the original
attached electron, the same value for H and H, '
implies that the destruction of a simple molecule
in solid is akin to the loss of a comparatively
bound electron in an atom.

Turning now to the central peak in the 0' spec-
tra (Fig. 1), the near-zero peak energy at short
t~ implies that the corresponding H, ' received
little or no energy in the H,

' breakup process.
The small energy shift can be attributed to the
clusters' energy loss in the target. Two mech-
anisms can be advanced' to explain such a, behav-
ior. One is that of a violent collision in which
only the partner of H,

' is deflected leaving H,
'

as an unmolested spectator. This mechanism is
relatively unimportant here because the central
peak intensity is observed to increase with de-
creasing target thickness. The other is the non-
repulsive dissociation of H,

' into H, '+ H. Al-
though this implies a transmission of clusters
with two atta, ched electrons, its probability at
short tD can nevertheless be finite though small.
The fact that the central peak intensity is ob-
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FIG. 1. Energy spectra of H2' emergent at 0' follow-
ing the breakup of 2.2-MeV H3+ in carbon foils of the
thicknesses indicated and normalized to the same num-
ber of Hs+. The zero in the energy scale refers to H2'

which neither received energy in the breakup process
nor lost energy in the target and is taken to be the mea-
sured mean energy of H2+ produced in the breakup of
the same H3' in a thin gas target.
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fore not been observed is the reversal of the
asymmetric intensities of such explosion peaks
with changing target thickness. Also evident is
a central peak whose relative intensity decreas-
es with increasing target thickness. The relative
peak areas are displayed in Fig. 2(a) as a func-
tion of the target thickness and the corresponding
dwell time tD. From the 0 spectra, we have ob-
tained the total yields of H,

' per incident H3'
based on the assumption that the H, ' are isotrop-
ically distributed in the c.m. frame. These es-
timated total yields are shown in Fig. 2(b). Note
that the central-peak events contribute ( I%%uo in
all points here because of their much narrower
angular distribution. Total H,

' yields from H,
'

have been directly measured4 previously but the
results have comparatively larger spread as a
result of the larger uncertainties in the target
thicknesses used. The longer tl, results are nev-
ertheless reproduced in Fig. 2(b) in order to show
the general trend. That the two sets join smooth-
ly indicates that the systematic errors in our con-
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tude observed here, we have estimated the in-
creased destruction probability for the trailing
fragment over that of the leading one, I', by us-
ing a simple model of a stationary positive point
charge Z illuminated by a uniform beam of elec-
trons of the corresponding velocity. An expres-
sion for I' can be obtained by taking the ratio of
the numbers of electrons intercepted by a circu-
lar disk of radius z placed at an axial distance z
behind the point charge for Z = 1 and Z = 0, and
this is

P = (1+4hz/r')"'.

Here b is the limiting impact parameter for for-
ward scattering and the expression is valid only
when both x and z are much greater than b and
less than the screening length a,. For the pres-
ent H, '+H' case, 5=0.038A anda, =2.8A and

we may take r = 1 A (roughly the internuclear sep-
aration of H, ') and z = 1 A (roughly the H, ' and H'

separation inside the target) yielding P = 1.08.
Since this value is reflected in the lifetime which
enters in the exponent of the intensity attenuation,
the predicted asymmetry factor will depend on tD.
For example, at t~ =0.8~ 10 " s, a value of 1.38
is obtained and this is reasonably close to the
corresponding experimental value of A = 1.25 [see
Fig. 2(a)] given the simple model used and the ne-
glect of the compensating wake-alignment effect.

It should be noted that the existing wake mod-
els" predict fluctuations of electron density be-
hind a moving ion but the magnitude of the in-
creased density predicted for the distance con-
cerned here is not large enough to account for
the present observation. This is understandable
since the models described the polarization
charge density through a macroscopic dielectric
function of the medium which did not take into ac-
count close impact collisions with the target elec-
trons. Such collisions can be expected to lead to
an enhanced electronic density behind the moving
ion because their essential effect is just the elec-
tron focusing described in the preceding para-
graph. Thus the changing asymmetry observed
here may well be explained through a more com-
plete wake model in which the contribution of
close collisions is taken into account in the in-
duced charge density. The asymmetric destruc-

tion effect will then be governed by the same elec-
tronic density which is responsible for the elec-
tric field causing the alignment effect. Finally,
the competing asymmetric effects described here
should be manifested by other structured break-
up fragments. The only other simple case in-
vestigated' to sufficiently short tD is H from H, '
and H,

' breakup. The effects seem to be present
there but an accurate assessment is difficult be-
cause the H spectra contain added features and,
in addition, were distorted by the use of a strip-
per foil.

In summary, our present study of H, ' from the
breakup of fast H,

' in very thin foils is seen to
yield new information on the breakup mechanisms
and survival probabilities of simple molecular
ions traversing a solid. Moreover, the results
demonstrate that trailing ionic molecular frag-
ments serve to provide a more detailed picture
of the ion-solid interactions since they sample
the electronic density induced by a moving ion as
well as the electric field that it generates.
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