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E. Seiler, "Qn the Construction of Quantized Gauge
Fields I. General Results" (to be published); in four
dimensions the result is known for the case of constant
field strength. Analogous inequalities for the rela-
tivistic situation have been shown by J. Schwinger,
Phys. Rev. 99, 615 (1954).

By stability theorems for the essential spectrum,
the equality sign in (7} extends to a larger class of B s
than the one considered here. In particular, it extends
to smooth 8 s with falloff at infinity.

For example, B(x)= x +y (more generally, any I3
~ at infinity); see Ref. 6 for details. Note that Ref.

9 and the positivity of H(a } imply that H(a) has no dis-
crete ground state.

Indeed for spin-0 particles

inf(spec(p —a)') ~ inf ~B(x) ~.
x &A

~6The theorem of Lieb appears in an appendix to Ref.
11.

~ For example, if V~L~/ (R~)+L (R ), a&HL~ (R );
this involves no loss of generality. Let V~= V+ex~.
H(0)+V, has a discrete ground state that converges to
inf(spec[H(0) +V]j. Define H(a}+V, by the Friedrichs
extension on C& . The inequality (7) is then proven by
passing to the limit q = 0.

We use the natural identification of fg( ) with the
spinor-valued function (0,$( }).
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General covariance and maximum four-dimensional Yang-Mills gauge symmetry lead to
these results: (1}Gravity is characterized by a dimensionless constant E-10 ~~; (2) the
Newtonian force is always attractive; (8) space-time has a torsion; (4) gravitational
spin-force between two protons is about 10 ~ times stronger than the corresponding New-

tonian force. A possible experimental test is discussed.

The idea of gauge symmetry has been developed
to obtain simple and elegant spin-1 fields by
Yang and Mills. ' When this idea was extended to
spin-2 fields such as gravity, the dynamics of
interactions becomes extremely complicated. ' 4

This may be due to the conceptual bondage of the
conventional approach which postulates the Rie-
mannian metric tensor as basic field variables.
The Yang-Mills-type gauge symmetry for gravity
has been studied by many physicists. ' ' The re-
sults are stimulating but not completely satisfac-
tory. Also, previous formulations of gravity in-
volves a dimensional coupling constant, which
leads to serious divergences in higher orders,

In this Letter, we explore a different approach
in which Yang-Mills gauge fields, associated
with maximum four-dimensional symmetry (i.e.,
the de Sitter group), are regarded as basic dy-
namical fields and the metric tensor is postu-
lated to be a function of gauge fields. The physi-
cal motivation is to combine the two basic prin-
ciples, i.e. , the Yang-Mills gauge symmetry and

the Einstein general covariance, in such a way
that the formulation of gravity, including ferm-
ions, involves a small dimensionless coupling

constant and agrees with exper iments. Further-
more, the dynamics of the gravitational interac-
tion and the maximum four-dimensional gauge
symmetry are interlocked in the same way as
that in electromagnetism. Thereby, serious
divergences could be reduced and other prob-
lems4 can be resolved as well.

We stress that the de Sitter group is used only

as the gauge group so that the dynamics of inter-
action between fields are uniquely specified by
such a gauge symmetry. One should not inter-
pret the de Sitter-group operators to be the
translational and rotational operators of physical
space-time. In other words, the physical space
may not be the same as the de Sitter space. '

We first observe that in analogy with the elec-
tric force, the gravitational force can be written
as -Il,Il,/r 2, where I, = G'l'm, and E, = G'l2m,

are dimensionless (for c=h= 1). This suggests
that the de Sitter group is natural for the gauge
group of gravity because it involves a length L.
The matrix representation" Z~ of the de Sitter-
group generator is given by

Z„=(Z, , Z,) =(y~/2L, iy&y„/2),
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(E, real and dimensionless) (2)

with

[ZB, ZC]=ifBC"Z~ ~ » C=i '
where a = jk denotes a pair of antisymmetric
indices and y~ is the constant Dirac matrix. The
gauge-covariant derivative has the form'

D~g=(&~+iFh~ Z~)g

are the gauge fields.
The action must be invariant under the com-

bined local SO(4, 1) gauge and general coordinate
transfor mations:

6x" = e„"(x)x"+ e "(x),

Oy(x) = ie "(x)z„g(x),

Gh„"(x) = —E 'a„e-"(x) +f "h„.Be c(x) .
in a Yang-Mills gauge theory, and hz" —-(h„', h„'~) As noted by West, ' F~"E„& g„+"' is the only

SO(4, 1) inva. riant. The action is

where E,=(- det g„„)'~', g»=f„cBfBBC/6 and

1.
&

——2igy" (8„+iFh
&
"Z„)j——,'ig(B& —iEh

&
"Z„)y"P —mug+ (f —(„m —m, ),

Ep~ = &~hp Sphu FfBc hv h
p ~

y~y + y y~ = 2g~ ~

The nucleon and the electron wave functions are y and g„respectively. Note that the action (4) is
physically meaningful if and only if there is a relation between the metric tensor g&~ and the basic
fields h„". We define

gran(x) =ep n pcs ep'=(exph) „'=5„' h+„'+-,'h„"h, '+
~

S,""=e, "e„'h,"= torsi. on,

(4)

~h~re the gauge fields h& (x) vanish at infinity, just like ordinary fields. The tetrads e„snd e
isfies e „'e;"=6&" and e „'e,"= &, '. And the matrix y" in (5) can be expressed as e,."y', where y' is the
usual constant Dirac matrix, y;y~+y„y, =2q, „, ri,.„=(1,—1, -1, -I).

We may remark that the covariant field tensor E„, satisfies the (gauge) Bianchi identity

D„E,~"+ D, Fg„"+~F„„"=0,

Dp Ep 3L pEII x EfBc p Ep ~

Also I ' in (4) corresponds to the usual gauge-fixing term, which is necessary for all components of
h„" to have well-defined wave equations. '

The fermion equation can be derived from (4):

[- ~i(sq+iFhq Z„)y" —~iy"(&q+iFhq Z„)+m]y=0 ~

To see the implication of (9) for the classical motion of a particle, let us consider Dirac's equation in
electrodynamics. We can multiply the Dirac equation by some factor and neglect small spin effects,
so that we have [(P„+eA„) —m ]y=0, in which the operator is just the classical relativistic Hamil-
tonian (which is equivalent to the well-known Lorentz equation, i.e., the Hamiltonian equation of mo-
tion of a charge). By the same procedure as in electrodynamics and neglecting small terms, we ob-
t»n the approximate equation of motion of a particle in an external field:

( g" 'P ~P „—m') g = 0, (10)

in which the operator is interpreted as the relativistic Hamiltonian for classical motion. The approxi-
mate relation g"'P&P„=m' can also be derived from 5S = -m5J (g&, dx" dx')~'= 0, but this extra as-
sumption is not needed here.

In the static case, the action (4) leads to the equations

&'h =L'[fy~P"0 —(2EL)&i"44+(4-4e)]~ &'h, , '= —4E(y,y g&,p' & +(y-y, ) -=F~,g",

in the weak-field limit, where only linear terms in gauge fields and "large" source term are retained.
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To be consistent with experiments, we should have

E= ~L(m + m, ) = —,'Lm, (i2)

as we shall see later. In order to determine g„„we apply the approximation of classical physics and
of point particle: &&=(m, 0, 0, 0), gyop=pp=5'(r). We find that the nonvanishing components are

k om —L'm/8vr, k '=k '=k '= —k '0 1 2 3 0 ~

"EZ,, "(r')d'r' ' EF. ;~V (r')a U (v')
( ))

,
4v }r' —r } a 16' }r' —r }

when U~ is the positive -energy Pauli spinor.
These relations are sufficient for our purpose
because only gpp is needed to have the second-
order terms in the potential y. It follows from
(7), (is), and (i3) that

gpp 1 + 2p+ 2p

g~~ —1+2+ —2p, k = 1,2~ Sq

(I() = —L m/8m',

(14)

This agrees with previous experiments because
the relativistic Hamiltonian for classical motion
is given by (10), provided that g» are given by
(14) with

L'= 8~a.

Since the Newtonian gravitational constant G is
2.6x 10 "cm', the relations (12) and (15) give

L = 8.1x 10 "cm,
I' =2x10 ~9,

(16)

(17)

where we have used m =m~~ 0.94 GeV in (17).
It is worthwhile to compare the a.ction (4) with

those in previous works in which the I.agrangians
are also quadratic in the gauge-field strengths. ' '
The main differences are that the equations for
gravity derived from (4) do not involve the third-
order differentiation of g&, and that we have the
correct limit for weak fields because of the defi-
nition (7) for g„„. Interesting new features in
this theory are that gravitational interaction is
characterized by the dimensionless constant I"
and that spin density Z,," is the source of "rota-
tional" gravitational field h»". Because of this
we may introduce a physically meaningful torsion
S "' for space-time by interpreting e,."e,'h '~ as
S,"". Yet the result (13) shows that torsion will
have little effect on macroscopic gravitational
phenomena because the spin density usually aver-
ages to zero on a large scale. However, the spin
force between two point protons coming from h»'
is about 10"times stronger than that which comes

from k;" as one can see from (13):

gravitational spin force
Newtonian force

d((a")k,,')/dr
d(m q )/dr

(18)

for two protons. Suppose we use strong magnetic
field (H = 10' G) to orient the proton spin in a body
containing N protons. At temperature T-300 K,
the ratio of the number of protons in two energy
states is N'/N= exp(-sg~H/kT). We can estimate
the absolute value of the ratio of the gravitational
spin force and the Newtonian force for two such
bodies:

fhN/r hN
L (Nm)/r N f

where 4N/N=(N-N')/N~10 ' Thus. if the mag-
netic force can be properly shielded and treated,
the predicted gravitational spin-force can be de-
tected in a Cavendish-type experiment involving
spin densities.

To conclude, the Yang-Mills SO(4, 1) gauge
symmetry for gravity implies that the gravitation-
al interaction between fields is characterized by
a dimensionless coupling constant and that the
gravitational strength is E'= 4x 10 3 . Since L'
& 0 for the SO(4, 1) group, the usual gravitational
force is always attractive, as shown in (14). This
is to be contrasted with the SO(3, 2) de Sitter
group in which L'&0. Furthermore, the theory
agrees with experiments including three classi-
cal tests and the time delay of radar echoes pass-
ing the sun; it also predicts the existence of the
gravitational spin force between fermions. This
new force may be either attractive or repulsive,
depending on directions of spins. The existence
of such a new long-range force may be significant
because it could affect the evolution of the uni-
verse and stars. Also, the gauge field h„'", pro-
duced by spin densities of matter, may be reason-
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ably interpreted to be related to the torsion of
space-time. Although the spin force may not be
detected in the usual gravitational phenomena or
in the (Stanford University-National Aeronautics
and Space Administration) gyro experiment, it
may be tested by a Cavendish-type experiment. It
is a challenging problem to carry out this difficult
experiment to test the interesting prediction (18).

The author would like to thank Dr. T. N. Sherry,
Professor G. Leung, Dr. P. Eby, and Dr. R.
Decher for useful discussions. Part of the re-
search was accomplished while the author held
a National Research Council Senior Resident Re-
search Associateship. The work was supported
in part by the National Aeronautics and Space Ad-
ministration and Southeastern Massachusetts Uni-
versity.

~@Present address.
C. N. Yang and B. L. Mills, Phys. Rev. 96, 191

(1954).
R. Utiyama, Phys. Rev. 101, 1597 (1956); T. W. B.

Kibble, J. Math. Phys. 2, 212 (1961).
C. ¹ Yang, Phys. Rev. Lett. 88, 445 (1974).

4F. W. Hehl, P. von der Heyde, G. D. Kevlick, and
J. M. Nester, Bev. Mod. Phys. 48, 898 (1976); L. N.
Chang, K. I. Macrae, and F. Mansouri, Phys. Rev. D
18, 285 (1976); F. Mansouri and L. ¹ Chang, Phys.
Bev. D 18, 8192 (1976).

P. C. West, Phys. Lett. 76B, 569 (1978); Wu Yung-
shih, Lee Ken-dao, and Kuo Han-ying, Kexue Tongbao
19, 509 (1974).

P. K. Townsend, Phys. Bev. D 15, 2795 (1977); see
also Befs. 8 and 5.

'Note that the energy is not positive definite for field
theories formulated in the (4+1) de Sitter space. This
is usually used to object to this type of space.

F. Gursey, in GrouP Theoretical ConcePts and Meth-
ods in Elementary Particle Physics, edited by F. GGr-

sey (Gordon and Breach, New York, 1964).
~J. P. Hsu, Phys. Bev. D 8, 2609 (1978); J. P. Hsu

and J. A. Underwood, Phys. Rev. D 12, 620 (1975).
"&.A. M. »r«, The Principle of Quantum Mechanics

(Oxford Univ. Press, New York, 1958), 4th ed. , pp.
268—265.

Evidence for Breather Excitations in the Sine-Gordon Chain

E. Stoll, T. Schneider, and A. R. Bishop '
IBM Zurich Research Laborato~, 8803 Ruschlikon ZH, &witserland

(Received 11 October 1978}

Using a molecular-dynamics technique for the classical sine-Gordon chain, we have
found that nonlinear breather modes give rise to two excitation branches. A low-frequen-
cy resonance is associated with the propagating envelope and a high-frequency peak with
the internal oscillations.

Recently, it has been demonstrated that the ex- lifetimes are limited. The complete integrability
citation spectrum of the sine-Gordon chain, as- of the sine-Gordon system enhances the lifetime
sociated with density fluctuations, is dominated and makes this example especially interesting.
by a ].Ow-frequency resonance, due to kink and Furthermore, breathers have an internal oscilla-
antikink solitons and a high-frequency phonon tory degree of freedom which increases their
peak. Moreover, the time-dependent mean- physical potential. " Unlike the kink, the breath-
square displacement revealed a long-time tail im- er need not require an activation energy, because
plying the nonexistence of the self-diffusion and its rest energy can range from Q to 2E„where
diffusion coefficient. E, is the rest energy of the kinks or antikinks.

Recognizing that the dynamics of the continuous It is the purpose of this Letter to investigate
limit of the sine-Gordon chain is described by whether or not the kink and breather modes do
the ubiquitous sine-Gordon equation, ' ' it is known give rise to new excitation branches in the dis-
that in addition to the kinks (solitons) and anti- crete and thermalized system. In view of the
kinks, there is another important nonlinear mode, lack of any reliable analytic estimates for dynam-
the kink-antikink bound state. This mode has ic statistical properties, we used a molecular-
been referred to as a "breather"' and a "bion."4 dynamics technique simulating a canonical en-
Although breatherlike excitations can be antici- semble. Details of this have been given by
pated in a variety of nonlinear equations, ' their Schneider and Stoll. '
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