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We construct the manifold of zero-energy eigenstates for a nonrelativistic spin-2 parti-
cle moving in a plane in an external magnetic field B(x)=Z„OX„(x—c„},with $A„}and

jc„}arbitrary reals and (k„}positive integers. For a given B the ground state is infin-
itely degenerate and the manifold of eigenfunctions is parametrized by a point in
R & ~~"+ ~. For such B's we prove paramagnetism with arbitrary external potential
V(x) .

Paramagnetism for nonrelativistic electrons is
well known. It means decrease of the free ener-
gy as a function of the external magnetic field or
positivity of the susceptibility. A full quantum
mechanical proof is not yet available. Textbook
discussions are based on perturbation theory in
the external field, semiclassical considerations,
or very simple model Hamiltonians.

In this note paramagnetism for zero tempera-
ture, i.e. , decrease of the ground-state energy
of an electron in an external magnetic field B
and an external potential V, is proved. The mag-
netic field is assumed to have only a z component
B, depending on the variables x and y. On the
way we prove a simple but remarkable fact: The
ground-state energy for very general magnetic
fields but vanishing external potential is infinite-
ly degenerate. The ground states can be con-
structed explicitly.

Consider the two-dimensional Schrodinger Ham-
iltonian

H(a) =[c (p-~)]'=(p-a)'-Bo. - o,

with p=(-i8„,-i8„),B =B„a,—B„a„,and o, the
Pauli matrices. ' H(a) describes the motion of a
charged particle with spin —' and no anomalous
magnetic moment' in an external magnetic field
B. This corresponds, in three dimensions, to
magnetic fields that have (x, y) dependence and

point in the x direction. At the same time, H(a)
is the square of the Euclidean two-dimensional
Dirac operator with zero mass, in an external
magnetic field. The infimum of the spectrum
of H(a), the ground-state energy if this point
belongs to a bound state, will be denoted by
inf(SpecH(a)].

For B = const, H(a) was solved in 1930 by Lan-
dau. ' Here, we shall construct the zero-energy
eigenstates of H(a) for a large class of magnetic
fields [see Eq. (3)] that includes polynomials in
x'+y' and their translates. These solutions sat-
urate the bound zero in Eq. (1) indejendently of
a.4 For a fixed, the zero energy is infinitely de-
generate and the manifold of normalizable eigen-
states is parametrized by a point in R' '"~" .
k = max{k„)is determined by B [see Eq. (3)].
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These results are used below to prove paramag-
netism with external potential [Eq. (7)].

Paramagnetism for spinning particles has two
physical interpretations. In the context of Eu-
clidean field theory it means positivity of the ef-
fective interaction Lagrangian (obtained by in-
tegrating out the fermionic degrees of freedom). '
In quantum mechanics, it is related to the phe-
nomenon of enhanced binding in magnetic fields,
e.g. , the existence of He .'

The feature that makes the zero-energy prob-
lem solvable for a large class of fields is that
the eigenvalue equation can be linearized' in a.
Consider

o" (p —a)( =0. (2)

N

B(x) =Q X„(x-c„)"».
n=0

(3)

Let z =x+iy, z =x —iy, A =a„+ia„2=a„ia„-
and finally (=(g„g). Equation (2) reads

(2iB, +X)g+ =0, (Bi&,—+A)P =0.

LetA =iX[2(%+1)] 'Z"z"+', g real. Since B(x)
=-i(B,A —s,-X), we have B(x) =X(x +y')»; sub-

inf(Spec[H(a) + V])( inf(Spec[H(a = 0) + V]),

Evidently, H(a)g = 0. The operator o' (p —a) is
linear in a and by superposing B fields for which

(2) is solvable one obtains again fields for which

(2) is solvable (with suitable products of g's). We

shall give below the explicit solutions g for (2)
with B(x)= (x'+y')", N being a nonnegative in-
teger. ' By superposition we are thus able to
solve (2) for any field B that can be written as
a polynomial' in x'+y' and translates of such
polynomials, i.e. ,

stituting in (3) and (4) gives

P, = »,exp, (zz)»" + 6', (z)
4(N + lj' (5)

g =~ exp
4( ), (zZ) "+e (z)

are constants and 6', are arbitrary analyt-
ic functions. For X)0, ( is square integrable if
K, =0 and 6' is a polynomial of degree 2%+1.
Similarly rc =0 for A. &0. A polynomial of degree
2N+ 1 has 2%+2 independent coefficients of which
the constant term fixes the normalization of (.
Thus the zero energy is infinitely degenerate
and its states are labeled by a point in a 2(2N+ 1)-
dimensional real vector space. ' In the constant-
field case, X=0, the vector space is a plane
whose points designate the center of rotation of
the Landau orbit. In analogy, one may say that
in the general case a point in the 2(2%+1)-di-
mensional vector space gives the "position and

shape" of the particle.
In the framework of Euclidean field theory the

zero-energy states can be interpreted as fermi-
onic pseudoparticles.

This result is interesting from several points
of view:

(i) In the case B= const the infinite degeneracy
is explained to be a consequence of translation
invariance. We see that at least as far as the
ground state is concerned, an infinite degener-
acy holds irrespective of the translation invari-
ance of the magnetic field.

(ii) The existence of a zero mode" is related
to a general paramagnetic inequality (conjec-
tured in Ref. 5) for spin-2 particles. " A special
case" of this inequality is

(7)

where V is an arbitrary potential. " The existence of zero-energy eigenfunctions of H(a) proves (8)
for the two-dimensional case with V= 0. In fact, for this case the equality sign holds because H(a), be-
ing the square of self-adjoint operators, is positive. "

(iii) The stability of inf(SpecH(a)) for a large class of fields, singular with respect to H(p, =O), is a,

remarkable fact.
(iv) That the bottom of the spectrum is essential (i.e. , not an isolated, finitely degenerate eigenval-

ue) is relevant to the absence of magnetic bottles for fermions. For spin-0 particles, on the other
hand, there are fields B such that (p —a)' has a purely discrete spectrum. " What distinguishes parti-
cles without spin from particles with spin is that spinless particles have a zero-point energy propor-
tional to iBi while spinning particles have no zero-point energy. "

Lich" has proven (7) for B= const By exte. nding his method and using the explicit form for the zero-
energy eigenstates we can prove (7) for any field B of the form (3). The proof holds both in two and
three dimensions [in three dimensions B= (0, O, B)].

Assume E, to be a discrete ground state of"H(a=O)+V:

[H(a=O)+V] f =Eof. (8)
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Take B as in (3) and assume A.„&0.Write
N k +1'

n= 3.

((~) is a zero-energy solution for all (d}. Note that it is square integrable over the 2N-dimensional
Im(d}, Re(d} space and that

I n((d}) g d(lmd;)d(Red, ) =0. (13)

lt follows that n((d}) cannot be positive for all
values of fd}. By the minimum-maximum prin-
ciple this proves (7).
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~For dimensions larger then three, a. should be re-
placed by y matrices with (V&,7&] =25», p, v =1,~ ~ ~, d.

This is crucial. If the modulus of the magnetic mo-
ment is smaller than 1, one expects diamagnetism. If
it is larger than 1, H(a) will, in general, be unbounded
below for fields that diverge at infinity.

L. D. Landau, Z. Phys. 64, 629 (1980), and in 7'Pe
Collected PaPers of L. D. Landau, edited by D. Ter
Haar (Pergamon, New York, 1965}.

Compare with B. Simon and I. Herbst, "Some re-
markable examples in Eigenvalue Perturbation Theory"
(to be published}.

I' = 8-, I @„„I

' = —
2(&

"
1)

(r —c„)"
n

By direct computation, the expectation value" is

&f4[~), tJI(~) + l'lf 4(,) & =&.Ilf g(,) II'+ n((d }),

where

o({d})= 2 f—&Ifl'&Iy(, )l'd~dX

(note that a is real). But, by (10) and the inte-
grability of ~n~ with respect to the ld} variables,

(10)

H. Hogreve, B. Schrader, and B. Seiler, "A conjec-
ture on the Spinor Functional Determinant" (to be pub-
lished).

6Independently conjectured in the constant-field case
ia-J. Avron, I. Herbst, and B. Simon, "Schrodinger
Operators with Magnetic Fields. I. General Interac-
tions" (to be published}, and Phys. Bev. Lett. 89, 1068-
1070 (1977}.

This is reminiscent of pseudoparticle solutions of
Yang-Mills theories. See, e.g. , A. A. Belavin and
A. M. Polyakov, Pis ma Zh. Eksp. Teor. Fiz. 22, 508
(1975) [JETP Lett. 22, 245—247 (1975)]. The situation
there is distinguished by vector potentials that belong
to the Lie algebra of, say, SU(2} and so is noncommu-
tative. In addition, attention is focused on solutions
with finite energy and so with B-0 at infinity.

8As a differential equation (2) can be solved for a
much larger class of A' s. This choice of B makes the
discussion of normalizability of g particularly simple
(see below).

OFormally the most general B(x) which can be ob-
tained by superposition is

B{x)= Z fdic(c) {x-c)2~&.

We are indebted to J. Bellissard for this remark.
For related questions see B.Jackiw and C. Bebbi,

Phys. Bev. D 18, 8897 (1976}.
~~For a spinless Bose system the converse is true

and diamagnetism has been. proven by B. Simon for ar-
bitrary a, mutual interaction potential, and externa].
potentials [Phys. Rev. Lett. 96, 1089-1084 (1976)j.
This result can be extended to the situation where a
is an external Yang-Mills field. It leads to a diamag-
netic inequality for the renormalized Euclidean func-
tional determinant: B.Schrader and B. Seiler, Com-
mun. Math. Phys. 61, 169 (1978}.

~There are related paramagnetic inequalities for the
partition function and the functional determinant; see
Ref. 5 for details. The paramagnetic inequality for the
functional determinant is known in the following cases:
in one dimension; in two dimensions it follows from an
analysis of the Schwinger model; in three dimensions
it has been shown by D. Bridges, J. Frohlich, S,nd
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E. Seiler, "Qn the Construction of Quantized Gauge
Fields I. General Results" (to be published); in four
dimensions the result is known for the case of constant
field strength. Analogous inequalities for the rela-
tivistic situation have been shown by J. Schwinger,
Phys. Rev. 99, 615 (1954).

By stability theorems for the essential spectrum,
the equality sign in (7} extends to a larger class of B s
than the one considered here. In particular, it extends
to smooth 8 s with falloff at infinity.

For example, B(x)= x +y (more generally, any I3
~ at infinity); see Ref. 6 for details. Note that Ref.

9 and the positivity of H(a } imply that H(a) has no dis-
crete ground state.

Indeed for spin-0 particles

inf(spec(p —a)') ~ inf ~B(x) ~.
x &A

~6The theorem of Lieb appears in an appendix to Ref.
11.

~ For example, if V~L~/ (R~)+L (R ), a&HL~ (R );
this involves no loss of generality. Let V~= V+ex~.
H(0)+V, has a discrete ground state that converges to
inf(spec[H(0) +V]j. Define H(a}+V, by the Friedrichs
extension on C& . The inequality (7) is then proven by
passing to the limit q = 0.

We use the natural identification of fg( ) with the
spinor-valued function (0,$( }).
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General covariance and maximum four-dimensional Yang-Mills gauge symmetry lead to
these results: (1}Gravity is characterized by a dimensionless constant E-10 ~~; (2) the
Newtonian force is always attractive; (8) space-time has a torsion; (4) gravitational
spin-force between two protons is about 10 ~ times stronger than the corresponding New-

tonian force. A possible experimental test is discussed.

The idea of gauge symmetry has been developed
to obtain simple and elegant spin-1 fields by
Yang and Mills. ' When this idea was extended to
spin-2 fields such as gravity, the dynamics of
interactions becomes extremely complicated. ' 4

This may be due to the conceptual bondage of the
conventional approach which postulates the Rie-
mannian metric tensor as basic field variables.
The Yang-Mills-type gauge symmetry for gravity
has been studied by many physicists. ' ' The re-
sults are stimulating but not completely satisfac-
tory. Also, previous formulations of gravity in-
volves a dimensional coupling constant, which
leads to serious divergences in higher orders,

In this Letter, we explore a different approach
in which Yang-Mills gauge fields, associated
with maximum four-dimensional symmetry (i.e.,
the de Sitter group), are regarded as basic dy-
namical fields and the metric tensor is postu-
lated to be a function of gauge fields. The physi-
cal motivation is to combine the two basic prin-
ciples, i.e. , the Yang-Mills gauge symmetry and

the Einstein general covariance, in such a way
that the formulation of gravity, including ferm-
ions, involves a small dimensionless coupling

constant and agrees with exper iments. Further-
more, the dynamics of the gravitational interac-
tion and the maximum four-dimensional gauge
symmetry are interlocked in the same way as
that in electromagnetism. Thereby, serious
divergences could be reduced and other prob-
lems4 can be resolved as well.

We stress that the de Sitter group is used only

as the gauge group so that the dynamics of inter-
action between fields are uniquely specified by
such a gauge symmetry. One should not inter-
pret the de Sitter-group operators to be the
translational and rotational operators of physical
space-time. In other words, the physical space
may not be the same as the de Sitter space. '

We first observe that in analogy with the elec-
tric force, the gravitational force can be written
as -Il,Il,/r 2, where I, = G'l'm, and E, = G'l2m,

are dimensionless (for c=h= 1). This suggests
that the de Sitter group is natural for the gauge
group of gravity because it involves a length L.
The matrix representation" Z~ of the de Sitter-
group generator is given by

Z„=(Z,, Z,) =(y~/2L, iy&y„/2),
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