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In this paper I introduce and solve a series of band problems in higher dimensions
which are generalizations of the one-dimensional Kronig-Penney model. These problems
are nonseparable, in contrast to the three-dimensional model in the original Kronig-
Penney work. In two dimensions the band problem is on a triazgular lattice, while in
three dimensions the band problem is on a body-centered-cubic lattice.

In an early and classic paper, ' Kronig and
Penney illustrated the Bloch theory of electrons
in periodic potentials by a simple one-dimen-
sional model. The potential assumed was a reg-
ular array of 6-function potentials. The resulting
calculation is manageable and instructive, for it
illustrates the expected band structure. Undoubt-
edly this simple and transparent example has
helped to introduce generations of solid state
physicists to an understanding of the three-di-
mensional band theory.

In fact, the original Kronig and Penney paper
also introduced a three-dimensional band prob-
lem, by taking as a potential the sum of one-di-
mensional potentials in three orthogonal direc-
tions. The resulting potential then has cubic sym-
metry. Since this potential is separable, one
easily constructs the solution from the corre-
sponding one-dimensional solution.

In this paper I introduce and solve a series of
band problems —generalizations of the Kronig-
Penney model —which are not separable. The
potentials are again 6 functions; but in bvo di-
mensions, the lattice is a triangular lattice,
while in three dimensions the lattice is bcc. To
my knowledge, this is the first example of the
exact solution of a nonseparable (higher-dimen-
sional) band problem

I wish to consider certain band problems in d
dimensions,
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, + V(y)4=ed.
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The potential Vis periodic, V(y+ P) = V(y), with
p= n y„. p are the primitive lattice vectors,

and repeated Greek indices are summed from 1
to d. The overhead arrow will always designate
a d- component vector.

The particular problems I wish to consider will
be derived from a corresponding periodic one-
dimensional N-body system, where N = 0+1:

N g2y
, + V4' = Z4'. (2)

The potential V is a sum of pair potentials,
N

V= Q v(x, -x,),

y„= Qx, iffy

is the center-of-mass coordinate. I assume that
the change of variables is given by an orthogonal
transformation A: y =A x, x= Ay (At= A ').
Note also that A,„=N ' '. Thus

N g2 g2 d g2
~ +Z

2 =1 J ~N n=l
(4)

The particle separations are

= (A,„-Aia)y„—= A, , y

(Repeated Latin indices are to be summed from
1 to N. )

One then sees that Eq. (2) separates, and I

each periodic with period unity, i.e. , v(x+n)
=v(x) for integer n

To exhibit the correspondence, I make a change
of variables from x's to new variables y's, where
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write a solution as

4(x) = exp(iky„) 4 (y)

netic Qux. By Bloch's theorem, one may choose
wave functions so that

Thus, I make the identification with correspond-
ing quantities in the band problem of Eq. (1):

V(y)= g v(A&, y ), e=E-k .

or

e(x, + n, ) = exp(i&, n, ) @(x,),

4(y+p)= exp(in, . X,.)4(y)=-e' '"4(y). (10)

Recall now that the original V was periodic in
the x's, so that V(x;+ n, ) = V(x;), with n& inte-
gers. But if x, -x~+n, , then the y's are trans-
formed as y -y„+n, A&„. As a function of the

y s, then, V(y) is periodic with primitive lattice
vectors [y,] = A,„.

These N lattice vectors are of course not all
independent, since

The reciprocal lattice vector w is given by K

= A.,y, .
I henceforth restrict myself in this paper to a

particular two-body potential —the 6-function po-
tential —given by v(x) = 2c5(x). Thus the potential
V vanishes everywhere except on the potential
planes. It then is convenient to partition the
whole space into regions designated by n = (n„
. . ., n„), n, an integer; where

Also, one sees that

y; cp~=-1/N, j4k;
y~ y, =l —1/N, j=k.

Thus, I conclude that in d dimensions, the 0+1
lattice vectors point to the corners of a regular
"(d+ 1)-ahedron"; that is, a line segment, equi-
lateral triangle, tetrahedron, etc.

Recall that the potential is a sum of N(N —1)/2
=d(d+1)/2 terms, each periodic, and each the
identical function of different variables as in
Eq. (7). Define the planes of the potential to be
the (d —1)-dimensional surfaces given by x; -x,.
=integer =~,, y. Thus the planes are perpendicu-
lar to the vectors X,~. But one sees that p„X,.~
= 5„,—5». Thus all the d —1 independent p„(k &i,j)
lie within the A. ,&

potential plane, or parallel to
it. This is sufficient to determine the plane.

In d dimensions, then, the volume of space
bounded by potential planes is an irregular (d+ 1)-
ahedron with vertices at the points

For d =2, the potential planes form a triangular
lattice. For d = 3 the potential planes form a
body-centered-cubic lattice; the intersections of
potential planes are lines connecting all nearest
and next-nearest neighbors.

I finally remark that although the many-body
system of Eq. (2) is periodic, the wave functions
+ are not to be chosen periodic. This would be
the case, for instance, if the particles were
charged and confined to a loop threaded by a mag-

e„(x)QA,(Q,P)exp[i Qx„k,]
=—Q A, (Q,P)exp(ixk~). (11)

Here P = (P1, . . ., PN) is a permutation of N ob-
jects.

It has been shown by McGuire' and by Yang'
that it is possible to satisfy consistently the
boundary conditions imposed by the 5-function
potential swithin the f.r. There remain N t free
parameters, which may be chosen to be either
A, (Q,I) or A, (I, P), or possibly some other con-
venient choice. Such a solution I designate
e,(xlA, ).

In any other region n, I seek a solution of the
form

4'(x; n) = C,(x —nl A„). (12)

ny —n~+ 1 & g~ -g~) n —n~ —$,

Note that the regions are overlapping, and n and
n+ n represent the same region.

Designate the region 0= (0, . . ., 0) as the funda-
mental region (f.r.), and observe that in the f.r.
lx; -k, l

&1 and Ix, -&x /Nl &1. any other region
n may be mapped one-to-one onto the f.r. by x -x'
= x —n. I here use the vector notation x = (x». . .,
x„). The wave function 4 (x) in region n will be
denoted by 4'(x;n) The.f.r. is further partitioned
into N! sectors labeled by a permutation Q of N

objects—Q = (Q1,Q2, . . , QN) .wher—e xz, & xz,
«. . . xz„. The sector (n, Q) of the region n will
be defined as that portion of the region n mapped
onto the sector Q of the f.r. by the previous map-
ping. In each sector Q of the f.r Iseek a. solu-
tion 4,z(x) in a form known as Bethe's Ansatz':
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Clearly this choice for the wave function satis-
fies Eq. (4) with energy

N

Z=gk '

within the region n. It then remains to match
the wave function in the overlap region.

I now look at the region of overlap by consider-
ing a point x in sector Q of the f.r. ; by definition
xz, «. . . x@N, &x~„. The points' of the region
n, = —6; @N, mapped onto this point under the in-
verse map x'-x=x'-n, is given by xQ1, . . .,

I I 1+ QN 1) QN Ql) ~ ~ o p XgN „1)XgN ~

Clearly the point x' lies within the region n;
I claim that it also lies within the f.r. For 1 &xN
—

xone & 0 (j & N); but then

(OO-I

(io

(0 IO)

)l

/
/

(000)

(0-io

~ ~

Q and Q' are related as before.
For equality of the exponential factors, one

sees that P' must be the same cyclic permuta-
tion of P that Q' is of Q. One finally then con-
cludes that

A, (q', P') = exp(ik„) A„(q, P), (14)

with Q'j = Qj —1, Pj'=Pj —1, and n, = —6;o~.
One sees that these two regions overlap in all

(N-1)! sectors such that QN is fixed but the
other Qj are arbitrary. For consistency, then
one must verify that a scattering of particles
Qj - 1 and Qj followed by a cyclic permutation
of QN gives the same amplitude as a cyclic per-
mutation of QN followed by a scattering of par-
ticles Qj'=Qj —1 and Qj'+1=Qj. One can easily
verify this term by term.

For interpretation as a band problem, it is
convenient to choose the wave function to obey
Bloch's theorem, 4'(x+ n) =e' "4(x). With the

0 &xo„—1 -xo, = xo„/ —xo.' & —1 (j«N).

Thus x' lies within the f.r. I determine the sector
Q' by noting that

I I I
X@N &X@1 &ooo&XgN

=&@ 1&&O 2& ~ & "a'N ~

Thus, (Q'1,Q'2, . . .,Q'N) = (QN, Q1, .. .,QN —1),
and Q' is a cyclic permutation of Q.

If one then equates terms in the wave functions
for the two overlapping regions in the region of
overlap, one finds

exp(ik~z)A„(Q, P)exp(ikzxq)

= A, (q', P')e xp(i k~, xo,). (13)

FIG. 1. The connections between amplitudes for the
two-dimensional band problem. The solid line indi-
cates a T &2 scattering, a dashed line indicates a T 23
scattering, while a dotted line indicates a cyclic permu-
tation.

previous choice for n, we have

0'0(x~ A„) = exp(- iaaf//) 40(xlAO). (15)

Upon combining Eqs. (14) and (15), one finds

A, (Q', P') = exp[i(k „—Xq„)]A,(Q, P). (16)

Q, P are related to Q', P' as before.
As an example, consider the case of ¹ 3. I

treat a band problem, and so I choose the c.m.
momentum to be zero: k1+ k2+k3 0 The sec-
tors (n, Q) l represent as points, and within a
region n the sector Q will be connected to sector
Q'= Ql, . . .,Qj+ 1, Qj, . . .,QN by an appropriate
two-body scattering matrix T; j+1 Further, cy-
clic permutations of appropriate sectors will con-
nect neighboring regions.

These connections are shown graphically in
Fig. 1. One is to imagine the graph extending
indefinitely as an infinite tiling of the plane. The
consistency relations verify that a determination
of a set of amplitudes A„(Q,P), with P variable,
around a closed path leads to an identity.

As promised, I have presented and solved a
series of d-dimensional band problems. Explicit
determination of the band structure requires de-
termining the eigenvalues of d commuting ma-
trices of size (6+1)!by (@+1)l. In a subsequent
publication I will present explicit expressions
for these eigenvalues in the form of coupled al-
gebraic equations. Such a determination enables
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one to treat thermodynamic systems, i.e. , sys-
tems with finite density of particles, correspond-
ing to mixtures of particles with different charg-
es moving on a loop threaded by a magnetic flux.
In this way one can investigate the occurrence of
superconductivity.
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A spike-shaped heat-capacity anomaly has been identified at the lower superconducting-
to-normal transition temperature 7,2 of the magnetic superconductirg system (Erf Hojg)-
Rh484. This anomaly can be distinguished from the feature due to long-r~~ge magnetic
ordering and indicates that the transition at T,2 is thermodynamically of first order.

The discovery of the destruction of supercon-
ductivity at a second lower critical temperature
T„ in the ternary rare-earth (HE) compounds
ErBh4B4' and Ho„,Mo,S,' and in various pseudo-
ternary BE compounds' ' due to the onset of long-
range ferromagnetic order has prompted recent
theoretical' "and experimental"'" interest in
this new phase transition. In this Letter we pre-
sent evidence that a spike-shaped anomaly in the
heat capacity of these compounds, which can be
distinguished from the broader background due
to magnetic ordering alone, is associated with
the superconducting-to-normal state (SC-N) tran-
sition at T,2.

The feature in the heat capacity near T'„ for
ErRh484 iS presented in Fig. 1 which shows
much more detail than originally reported in Bef.

There is a distinct sharp spike-shaped anom-
aly that peaks at 0.93 K, within the narrow range
of 7'„values as inferred from ac electrical re-
sistance and magnetic susceptibility measure-
ments (0.91—0.94 K),""which appears to be su-
perimposed on a broader feature due to the long-
range ordering of the Er" magnetic moments.
The latter feature begins at —1.5 K, close to the
onset of precursor scattering at 1.2 K observed
in neutron diffraction experiments. "

To establish that the heat-capacity spike is as-
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FIG. 1. Heat capacity C vs temperature T near T,2

for ErRh484. The arrow indicates the SC-N transition
temperature as measured by ac magnetic susceptibility.
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