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with W(T„) = eTs —Tn P(&lnZ, /&P) r A and r(Ts)
= p(slnZ/&p)r A. From Eq. (12) one sees that W

= eTs (—2m) 'Ts'+O(T„', eTs'), and r„=(2w) 'Ts
+O(T„', eTn). As usual, T, is given by the zero
of W; as expected T,=2me+O(e'), which is the
correct result for the classical three-component
model. ' The exponent v can be defined as in Ref.
3 and so has the same value (since W is the
same). One other independent exponent must be
checked. We will check g because note that g
does not correspond to the power-law behavior
of I; at T, . Consider the magnetization, Eq. (8),
in the unrenormalized theory. With a constant
magnetic field h in the z direction, the bare prop-
agator becomes ST/(h'+ ~h~), and so Eq. (8)
gives m(T„h) = —1 —(4v) 'T, in~ a ~; this is the e

expansion of —
j h

~

' with 6= 2e ', and so q+ e

+ O(c') from hyperscaling. This is also the cor-
rect result. In addition, we could define an expo-

nent qg7) via I","(T,) —
p, 'h'(h/p) "and p replaced

by A in the unrenormalized theory. Then, Eq.
(15) implies q = e —g(T, ), so that q = 0+ O(e').
This last result is due to the lack of a singular
self-energy contribution until two-loop order ex-
actly as in y4 theory near four dimensions.
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Nuclear acoustic resonance of interstitial
crystal of the transition metal niobium at 80
magnetization-dominated width of 0,4 G and

We report the first observation of nuclear
acoustic resonance (NAR) for hydrogen in a met-
al, in this case Nb. The dominant resona, nt dy-
namic interaction between acoustic waves and the
interstitial 'H spin system as well as with the
"Nb nuclear spin system of the host metal is the
Alpher-Rubin (A-R) effect' ' which generates a
local rf magnetic field associated with the acous-
tic standing wave established in the specimen.
The local rf field is the acoustic analog of the ex-
ternally applied H, field in NMR, but avoids the
rf skin-effect limitations inherent in NMR experi-
ments on bulk conducting samples. The experi-
ment was performed at 300 K and &u/2n =210 MHz
in a superconducting solenoid at 49 kG. A com-
posite resonator was prepared consisting of
(i) a 3N+pure (& 99.9%%uo purity), cylindrical Nb

single crystal, 1.28 cm diam and 0.83 cm long

solute hydrogen has been observed in a single
0 K and 49 kG, The resonance line has a de-
a negative Knight shift of (8+4) ppm.

with axis along [110]and end faces ground opti-
cally flat and parallel, (ii) a 0.635 cm diam, 43-
MHz fundamental, overtone-polished, x-cut
quartz transducer operated at the fundamental
and fifth harmonic, and (iii) a Canada Balsam
resin bond. The specimen was reacted with hy-
drogen gas during cooling from 800'C to obtain
a single crystal of Nb-H solid solution with a H

concentration of 2.6 at.%.
A reflection mode technique, ' employing a hy-

brid junction uhf bridge spectrometer, ' was used
together with diode detection. Precautions were
taken to eliminate extraneous proton sources
from the probe since the system was capable of
observing stray NMR pickup as well as NAR sig-
nals. To ensure long-term acoustic stability it
was necessary to retain the Canada Balsam bond
as the only remaining significant source of NMR
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Besides affecting line shape, the demagnetizing
field affects the shift which arises from bulk sam-
ple paramagnetism. Such shifts already have
been considered in the NMR of hydrogen in met-
als' ' and can be the source of considerable er-
ror in Knight-shift determinations. The shift is
apparent in Fig. 2 from the location of the calcu-
lated signal crossover 0.4 G upfield from "zero"
where it would have been were the protons "free."
The total shift of the hydrogen line relative to a
doped water reference was found to be +0.8+ 0.2
G. Correcting for the calculated demagnetization
shift results in a net (negative) Knight shift of
0.4+0.2 G upfield from the H, O reference, or
] ~/H( =(0.8+ 0.4) x10 '%. Zamir and Cotts"
have reported, at 4 kG, zero shift of NbHp 05 and
a negative shift of 1.6x10 '%%uo for all higher con-
centrations. The NAB 'H line saturated rather
easily, which is consistent with the anticipated"
proton T, of about 0.2 sec.

The nonresonant A-8 absorption modulation
signal given by,

a++ sin'0 p'
Puzc' 1+P'

where H is the modulation field, was used as an
absolute attentuation calibration reference" and
served also as a standard to establish optimum
spectrometer tuning at all crystal angles. With
the use of this method as a sensitivity check, the
hydrogen NAR was examined at 0', 45', and 90'.
The 'H signal vanished at 0' and 90' as expected
from Eq. (1) while the nonresonant A-8 signal
peaked at 90' as expected from Eq. (2). The max-
imum hydrogen NAR signal of Fig. 2 occurred at

45'. From the integrated line intensity and the
A-R modulation calibration we find the absolute
attenuation of the observed proton NAR signal to
be An = 2&&10 ' cm '. This agrees reasonably
well with the calculated value considering that the
observed shape is not a Lorentzian.
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ence Foundation and by the U. S. Department of
Energy.
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The light emitted by small-particle tunnel junctions is partially polarized. . The excess
light polarized perpendicular to the junctions is possibly due to the radiative decay of lo-
calized surface plasmons that are excited by tunneling electrons. Both the angular distri-
bution and the intensity versus photon energy of this light are in agreement with recent
theoretical calculations based on the excitation and radiative decay of surface plasmons
in a small metal particle located above a metal film.

Recently Rendell, Scalapino, and Muhlschlegel
calculated the role of local plasmon modes in
light emission from small-particle tunnel junc-

tions. ' A peak in light intensity was predicted at
a photon energy near 1.85 eV due to radiative de-
cay of local plasmon modes of gold particles on

912 1979 The American Physical Society


