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Evidence is given to show that 0 behaves like a tetrahedral rotor with a level sequence
0+, 8, 4, 6+, 7, 8+, .... The charge form factors for excited states can be predicted
from the ground-state form factor and excellent agreement with experiment is obtained

for the 3 and 4+ states at 6.13 and 10.85 MeV, respectively. The elastic-scattering data
are fitted using deformed rather than spherical o. clusters.

For many years the collective E3 transition
strength for the 3 state at 6.13-MeV excitation
energy in "O has interested nuclear theorists.
This state is often said' to be predominantly a
particle-hole shell-model state with the configura-
tiond, l,P,I, '. Except for Dennison's early work'
the 3 state has always been regarded as basical-
ly a vibrational excitation. We present here new
evidence based on electron scattering that this
3 state and the 4' state at l0.35 MeV are rota-
tional excitations of a tetrahedrally deformed nu-
cleus. As shown below, a pure rotational excita-
tion in lowest order leads to a factorization which
allows inelastic form factors to be completely
predicted from the ground-state form factor.

The major change in the present model from that
of Dennison is the use of deformed n clusters.

For a nucleus with a cluster distribution yield-
ing an intrinsic deformation with tetrahedral sym-
metry, one obtains" ' a rotational band with the
spin and parity sequence

The relative energy of these states in lowest or-
der is given by

E, "=(h'/2I)J(J+1),

with

I=10 =:-M~R
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being the moment of inertia of the semirigid sys-
tem calculated at the equilibrium radial positions
R of identical clusters of massM .

Higher-order rotation-vibration corrections
have been given by Hecht' and involve only two
corrections for the ground-state band, i.e.,

~ "=-D,J (J+1) D-, (O»»(tensor))

in which D, is positive and determines the degree
of stretching and the fourth-rank tensor term is
an interesting term tabulated by Hecht4 which
gives deviations from the J'(J+1)' form. This
tensor term is important to explain the fact' that
the 4' level at 10.35 MeV excitation in "0cannot
be understood in a simpler theory with D& =0. Us-
ing the above higher-order theory, one can fit the
levels suggested from zeroth-order theory to the
sequence 0' (g.s.), 3 (6.13), 4' (10.35), and 6'
(16.29) which requires & =I'/21=0. 5627 Me&, D,
=3.202x10 ' MeV, andD, =-0.448x10 ' MeV.
Such a set of parameters yields the higher mem-
bers' with J"=7 and 8 at 21.19 and 29.18 MeV,
respectively. For 4'~ 8' the theory is rapidly
showing signs of not being appropriate as the
"correction" terms are too large. It suffices for
the present discussion to note that the above sim-
ple theory involves only small ~ " corrections
for the lower-spin members with J"=3 and 4'.
The value for 8 above is consistent with an equi-
librium distance of R =1.86 fm, w'hich is close to
the value used in the electron-scattering analysis
below.

The equilibrium radius vectors R~ for the i =1,
2, 3,4 clusters are arranged tetrahedrally' and
define a set of body-fixed axes x',y', &'. To cal-
culate electron scattering we transform the posi-
tion vector r„of a given nucleon (a) belonging to
a given cluster (i) to more appropriate coordi-
nates:

r] =rag —R]+Rg =&rag+~& ~

For a semirigid "molecular" system the ground-
state band has a zeroth-order wave function of a
product type:

~~v =4 &v

in which the rotational state is a specific linear
combination of D-matrix elements for each value
of A The transition-matrix element appropriate
to electron scattering exciting a state with spin J
in the ground-state band then has a factorized
form

M(0- J) = [M~(0- J)]Mv

in which

Mv = ($v i exp(iq' 6r g) i$v )

is the internal vibrational matrix element (com-
mon to the entire band in lowest order) for a giv-
en momentum transfer q.

The rotational term is easily evaluated by inte-
grating exp(iq R,) over the Euler angles n, P,
and y which define the body-fixed system relative
to space-fixed axesx, y, and&. We find

&~.'Iexp(iq R,)l4'&=a j (q~)Y *(q),

where j~(x) is a spherical Bessel function, Y~„*
is a spherical harmonic, and g& is a constant
which is determined entirely by the tetrahedral
geometry, i.e.,

~j -ZE E YZE( I

with a~ being the coefficients in the D-matrix
expansion for the state g„and &&' represents the
polar angles of 8& relative to the body axes x',
y

I gt
The properly normalized charge form factor

factorizes in a similar way to M above and yields
the desired relationship between the inelastic and
elastic form fa,ctors:

C, ~0(q

in which C~ is proportional to g~ from the norm'
of E,gq') when Ev(0) =1. We find for the present
case that Co =1~ C3 =3 89~ and C4 =2 29»nce
C~ is known and E„(q') is the same vibrational
form factor for all J in the band w'e only need to
determine R and E„(q') from the 0'-0' data in
order to fully predict E,~(q') for J = 3 and 4.

The results for ~E„['and IE„[',with R =1~ 96
fm andE„(q') taken from the fit to jE»(', are
shown in Fig. 1. The close agreement for both
the 3 discussed below and 4' states is quite re-
markable in view of the fact that no additional pa-
rameters are invoked. As indicated by Berg-
strom et al.' some difficulties are experienced in
fitting the 4+ form factor with more conventional
theories. ' Measurements of the 4' form factor
at higher q would be interesting since the alterna-
tive theories available" ' predict a peak at q-1.3
fm '. The BE(4) for the 10.35-MeV level is cal-
culated here to be about 2600 e' fm' which corre-
sponds to about 3 s.p.u. (single-particle units,
as defined by Bernstein" for "0).

The form factor for the 3 state (also complete-
ly predicted by the model from the 0' form factor)
is a remarkably good fit to the data. Although
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F1G. 1. Theoretical predictions for the inelastic
charge form factors for the 0+ 3 transition (solid
line) and the 0+ 4 transition (broken line). Experi-
mental points for the 3 state are from Ref. 7 and for
the 4+ state from Ref. 8. Note that the high-q data and
some of the points around the maximum of the 8 data
involve a weak contribution from the unresolved 0
state at 6.05 MeV.

fluency and E,&„„„(q')being a form factor for the
cluster itself. If the a cluster is spherical, we
expect

E i (q)=Foo (q)

as measured via electron scattering from 'He.
I was unable, as others have been, " to obtain a
very good fit to the "O form factor F„(q') with
this assumption. Changes in Fo, (q') correspond-
ing to the use of clusters larger or smaller than
the free n particle yield no fits at all because of
the additional zeroes appearing in F«(q'). The
calculation for spherical clusters (using the
above approximation of a free a particle) is
shown in Fig. 1 and requires a very small value
of n = 0.06 fm' which is not consistent with the
physical values (see below) of Sv for the cluster
model. " The fit for spherical cy particles is not
as good as that for deformed clusters for large
q values but it could be argued that the oscillator
approximation is the cause of this discrepancy.
Our concern in the case of the spherical Q.-par-
ticle model is the need for very small values of
the oscillator length which appear to be totally
inconsistent with the calculated vibrational spec-
tra' and the n-particle binding energy of "O.

If we deform the n cluster in a similar manner
(tetrahedrally) to "O then

E«(q') =j,(qR )Ev (q')

this is only a lamest-order calculation we expect
from our estimates above of ~ ' that corrections
to E» (and E») will also be at the 10'%%uo level. The
BE(3) value is easily calculated from the ~E»~ '
curve and is found to be 1200 e' fm' which is in
close agreement with experimental values" (1150-
1500 e'fms). The result for j F»( ' in Fig. 1 is
the major result of this work and represents
strong evidence for the rotational character of the
3 (6.13) level in "O.

I note at this point that I have not shown any
evidence for the deformed nature of the o. clus-
ters in "0. To do this requires a model-depen-
dent calculation for E„(q2) and a comparison with
E„(q') from electron scattering. To ca,lculate
E„(q'), I make the following assumptions: (1) The
internal vibrations of a cluster are independent
of the relative vibrations of clusters; (2) the zero-
point motions, which are all we need here, are
harmonic oscillations about the equilibrium posi-
tion. In this case we have a further factorization,

Egq') = E,g.„„(q')exp(- o.q'),

with n being related to the average oscillator fre-

and we expect the embedded cluster to satisfy

E„„„„(q')= E„"(q'),

provided that the relative orientations of the de-
formed clusters in "0 undergo zero-point har-
monic vibrations. These latter degrees of free-
dom are then absorbed into the exp( —nq') term.
Using R„=0.98 fm =&/2 as suggested from close
packing yields an excellent fit" to the 'He charge
form factor. Using a value of a=0.23 fm' then
gives a very good description of F«(q') as shown
in Fig. 2. The value of the fitting parameter a
corresponds to an average oscillator length a (de-
fined by a'=4m = (5/M u) of 0.96 fm for the re-
lative cluster motions. Earlier work' on the
specific values of k&u suggest an E-type vibration
with Su-4 MeV and an E-type vibration with Su&

-6 MeV. The remaining thirteen dimensions of
relative motion between clusters we estimate to
have 5+ ) 14 MeV, which yields an average oscil-
lator length satisfying 0.8 &a ( 1.07 fm in rough
agreement with the value needed to describe the
electron-scattering data.

In conclusion we emphasize that the relation-
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here are not totally convincing, but when com-
bined with a study of other light nuclei'" suggest
growing evidence for a tetrahedral n particle as
well as for a tetrahedral "Q. A more detailed
analysis of the "0 data and other 4N nuclei will
be presented at a later time.
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ships proposed here between the 3,4' form fac-
tors and the elastic form factor for "Q depend
only upon the assumption of a tetrahedral rotor
and not on the details of the clusters themselves.
The arguments for a deformed z cluster given

FIG. 2. Theoretical calculations for the elastic
charge form factor squared for deformed clusters (full
line) with e = 0.28 fm and spherical clusters (broken
line) with n =0.06 fm . The value of 8=1.96 fm is taken
from the close-packing arguments of Ref. 12. The ex-
perimental points are from Ref. 18.
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