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Kinetic Theory of Light Scattering from a Fluid Not in Equilibrium
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The kinetic theory of the Quctuations of a gas not in equilibrium is given and applied to
light scattering. Unequal heights of the Brillouin ifnes are found in the presence of a tern
perature gradient.

As part of a systematic theory of fluctuations in a Quid near equilibrium, which will be published
elsewhere, ' we have computed the scattering of light by such a Quid. Contrary to the case of a Quid in
equilibrium, we find that when there is a thermal gradient in the Quid, the intensities of the two Bri-
llouin lines differ by an amount proportional to the temperature gradient. The same effect was found

by Procaccia, Ronis, and Oppenheim on the basis of a different theory, but their expression differs
from ours in that we find an important additional contribution to light scattering not present in their
theory. We will now outline our calculations based on the kinetic theory of gases explicitly for a gas
of hard spheres. However, the results are also valid for more realistic interparticle potentials.

The kinetic theory starts from a nonlinear Quctuating Boltzmann equation for the deviation
nope(v, )g(X»t) of the actual single-particle distribution function

N

F(X„t)= gv(X, -x,. (t))

from its equilibrium average value

n y (V,) =n (m/2vk T )~mexp(-P mV, '/2)

so that

F(X„'t)=n p (V,)[1+g(X„t)]

and

[8/&t+L(X,)]g(x„t)=n fdX, q, (V,)T(X„X,)q(X„t)q(X„t)+S(X„t).
Here x, (=P;,0;) denotes collectively the phase-space variables of molecule i. X; refers to a particu-
lar position R; and velocity V; (i =1,2) in phase space; Pc=1/k~T» and no and To are the equilibrium
number density and temperature, respectively; L(X,) =V, &/&R, n, A, (V,), w-here A, (V,) is the linear
Boltzmann collision operator'; T(X„X,) a binary-collision operator defined elsewhere' with A, (V,)
=no/ dX, cpo(V, )T(X„X,)(1+P»), where P» is an operator that permutes particles 1 and 2; m is the
mass of a particle; N is the number of particles; kB is Boltzmann's constant; and t is the time.

S(X„'t) is a fluctuating force, whose properties are determined by the procedure outlined below. Set-
ting

0 =(0)+~4

where angular brackets indicate a phase-space average over an initial nonequilibrium ensemble de-
scribing the fluid, one obtains from (2) two coupled equations, where the equation for (g) is the aver-
age of Eq. (2), and that for 5It is given by the difference between Eq. (2) and its average. Expanding
Q) and 5g as (g) =h(g,) + ..., 5g =el', + ..., where & and e characterize the magnitude of the devia-
tions from equilibrium and of the size of the Quctuations, respectively, and keeping only terms to
first order in the expansion parameters & and ~, one obtains the following coupled equations:

[8/st+L(X, )]Q,(X„t))=0,

[8/Bt+L(X, )]&(,(X„t)=n f dX, q, (V )T(X„X,)(1+P„)(q,(X„t))ug,(X„t)+ S(X„t),
(4)

(5)

862 1979 The American Physical Society



VOLUME 42, NUMBER 14 PHYSICAL REVIEW LETTERS 2 APRiL 1979

where S(X»t) has been assumed to be of order ~, and the term involving (g, (X»t))5$,(X„t) is of order

Assuming that

(S(x„t,0(x„t,)) =A(X„X„t,)5(t, —t,),

and that

(S(X;;t)) =O and (S(x„r)~q(X„O)&= O

for all t & 0, and using the formal solution of (5) for 5 $,(X;;t) (i = 1, 2), one can determine A (X»X» t)
in terms of the known equal-time correlation function (&$(X» t)5((X»t)), with the help of (1) and (3).
First, one has

(~$(X„t)g(X„~))= ' ' [1+ (q(x„t))]+g, (X„X„t),~(X, -X,)
nocpo V,

(8)

where

g, (X„X„t)= [F,(X„X„t) —F,(X„t)F,(x„t)]/n,'q, (V,)y, (V2)

with
N

F,(X„t)=(F(X„&))and F,(X„X„&)= (p pa(X, -~, (t))g(X, -~,.(g))).
i= l 3=1

jwi

Now (&$,(X»t)&g, (x»t)) is give~ by the right-hand side of Eq. (8) including 0(&). Here g, satisfies the
equation'

[8/&t+L (X,)+I, (X,)j g, = 7'(X„X,)(1+P„)(q,)
while (g,) is a solution of (4) to first order in the gradients:

((~(X~;&)) = " + PomV~„6u„(R~; t) + [2Pom V~2 —2]
Sp 0

+ 'A [V,.V,S- 3~.& V,']D.,(R„t)+ [-.p, mv, '- —,j (10)

Here &n, 5u, and 5T are the average deviations, respectively, of the density n(B „t), the flow velocity
u(R„t), and the temperature T(B„t)from their equilibrium values; D;; (R„t)= 2[&u;/&R„+ &u,/&8„.],
repeated Greek symbols imply summation convention, and ~;, is Kronecker's 6 function. This leads to

A(X„X„'t)= —'+ L(l)+L(2) ' ' [1+($,(x„'t)) j+ T(X„X2)(1+P,m)(((x„'t))V(X, -X,)
SPPP l

-n, (l+ P„)fdX, y (V,)T(X„X,)(1+P„)Q,(x„t)) v(x, -x,)
noyo V3

This expression for A(X»X»t) is a generalization to a nonequilibrium system of one given before by
Dixon and Zwanzig' and also by Hinton' and by Fox and Uhlenbeck' for fluids in equilibrium. As will
be discussed below (cf. remarks 2 and 8), the equations (4)-(11)with the bilinear term form a consis-
tent set. '

The light-scattering intensity can be expressed in terms of the unequal-time density-density correla-
tion function:

S(k, &u) = (VT) 'f O'It, f~ O'R, f „dt,f r„d, exp(- i[k (R, —R,) —&o(f,, —t, )jj (5p (R„t,)5p (R„t,)), (12)

where

&p(R„'t;) = nomf d V, yo(V, )&$(X„'&;) (13)

is the local density fluctuation at R, at t;, and T the time of observation. Equation (12) is a generaliza-
tion to nonequilibrium of the usual expression for S(k, &u) for a fluid in equilibrium. (5P(B» t,)5p(B»fm))
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can be computed with Eq. (13) from the unequal-time correlation function (6$,(X»&,)5$,(X» t,)) which
in turn can be obtained by first solving Eq. (5) for 5$, (X» &,) and &$,(X2; t2), multiplying these solutions,
and then averaging over fluctuations using Eqs. (5) and (7). Inserting hydrodynamic modes'" to calcu-
late evolution operators involving I.(1) and I (1)+L(2), one finds that for a. stationary state with Mi =0,
that is, a state with a constant temperature gradient and no pressure gradient,

cp —ct, 2Dg k
S(k~~)-PkaTXr s .D kg)2Cp +(Dzk

c„ I' 0' —y 0 ~)eT'5 &&& I' 0'+y $,~)c1' '$" vsse
2c~ (co —ck)'+ (—',I', k')' +

((u+ ck)'+(2I",k')' (14)

The qunatities y, $, ~) are functions of R and &e,

vrhose explicit form will be given elsewhere. "
As functions of ~, y, (k, a&) and y (R, &u) have ex-
trema at cu = kc and ~ =kc, respectively, and
the value of y, at these points is given by

y,$,(u=kc}=y $,co=-kc) =y,

vrhere

,
2T BI' I 4D~+ ————+ 2Q7. eBT

p
2 3 I',

M the above expressions, p =mn, D~ is the ther-
mal diffusitivity, I', is the sound-absorption co-
efficient, c is the velocity of sound, o. is the co-
efficient of thermal expansion, y~ is the isother-
mal compressibility, and c~ and c„are the specif-
ic heats at constant pressure and volume, respec-
tively. AQ thermodynamic quantities and trans-
port coefficients as well as &&T in Eqs. (14) and
(15) are to be interpreted as space averages over
the scattering volume. In Eq. (15) the first term,
1, is due to g, (X„X»&)while the other terms
(between square brackets) are due to the bilinear
term containing (()5g in Eq. (2); the last term in
Eq. (15) stems from the condition gradp =0. We
make the following remarks:

1. A temperature gradient leads in our approx-
imation to unequal contributions -+y gradT to the
Brillouin bnes that do not occur in equilibrium
when gradT =0. In contrast to our results, Pro-
caccia, Bonis, and Oppenheim' find that y = 1.
We remark that a velocity gradient leads to equal
contributions of - grad u to the Brillouin lines.

2. Without inclusion of the bilinear term, Sg,
&o) will depend on the particular equilibrium
state nocpo(V, ) chosen in Eq. (1).

3. The contribution to y from g2 is caused by
long-range correlations ™1/k' between two parti-
cles that have previously collided. These cor-
relations in g~ only exist in a Quid not in equilib-
rium and have been discussed before by Kirtz,
Ramanathan, and Bandri, "by Blatt and co-work-

ers, "and by Procaccia, Ronis, and Oppenheim. '
We find that they as well as the bilinear term in
Eq. (5) have to be included if spurious fluctuations
in the Euler equations on the hydrodynamic level
are to be avoided.

4. All thermodynamic quantities and transport
coefficients in Eqs. (14) and (15) should be taken
at their low-density values. Then the contribu-
tions to y from the bilinear term exceed that of
g» leading to a value for y of about —1.6. To ob-
tain an effect of a tv percent, k values of the
order of 1000 cm ' have to be used.

5. A generalization of the formula, Eq. (14),
for S$,~} to dense gases and liquids on the basis
of a hydrodynamic calculation wiQ be published
elsewhere. " It appears that for k values of the
order of 10~, i.e., for light in the visible range
and for small scattering angles, one has an ef-
fect of a few percent.
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