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Monte Carlo Renormalization Group
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A simplified method of applying a renormalization-group analysis to Monte Carlo simu-
lations of general systems is presented and Qlustrated with applications to the Ising mod-
el and the three-state Potts model.

Two years ago, Ma' suggested combining Monte
Carlo (MC) simulations of statistical-mechanical
models' with a renormalization-group (RG) anal-
ysis of the critical properties. ' The particular
method which he suggested was based on a direct
simulation of the fixed-point Hamiltonian, from
which he calculated matrix elements for the lin-
earized RG equations. The eigenvalues of these
matrices then gave estimates of the critical expo-
nents. Ma applied his method to the two-dimen-
sional Ising model with encouraging results.

Ma's method has some drawbacks which have
prevented its general application to problems of
interest. The main difficulty was that the direct
simulation of the fixed-point Hamiltonian involved
a severe truncation in the number of coupling con-
stants, while leaving a large parameter space to
be scanned for the fixed point.

In this Letter, I would like to present a some-
what different approach that eliminates these
difficulties: (I) It is only necessary to simulate
the original Hamiltonian, not the fixed point or
any renormalized Hamiltonian; (2) the truncation
is small (and systematically improvable) if the
range of interactions for the fixed-point Hamilton-
ian is small with respect to the lattice size; and
(3) the parameter space to be scanned is only
that of the original Hamiltonian. The result can
be viewed as an extension of the standard methods

of analyzing MC simulations that extracts useful
information from correlation functions that are
normally discarded. It can equally well be viewed
as a systematically improvable real-space re-
normalization-group approximation that includes
the effects of many interactions in the renormal-
ized Hamiltonians.

Consider a lattice model in d dimensions with
N" sites. A "spin" o,. (discrete or continuous) is
associated with each site and the Hamiltoniao has
the general form

H =Q„K S~,

where each S is some combinations of the o's
that is translationally invariant subject to period-
ic boundary conditions. For example, H could be
a two-dimensional Ising model, v, = +1, and

Si= Q c;&~,
(ij&

where the sum extends over all nearest-neighbor
pairs. The RG transformation will, of course,
generate effective interactions between more-
distant neighbors as well as many-spin couplings.

Once a particular renormalization transforma-
tion, H~" ")=P~H~") (with scale factor b), is
chosen, the asymptotic critical properties will
be determined in the usual way by the eigenvalues
of the linearized RG transformation matrix,
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T ~*, in the vicinity of the fixed-point Hamil-
tonian, H*. Specifically, '

K„(" ') —K~*=ps T~()*(K()(")—Ks*),

where

r.,*= [sK (" ")/sK, (")],*
and the eigenvalue equation is

(2)

(3)

The critical exponents are obtained from the
eigenvalues in the usual way [v = lnb/In)(. ,', r) = d
+2-2inA. ,'/Inb, etc. , where A.,'(') is the largest
even (odd) eigenvalue]. '

Note that, for these equations to be useful, the
derivatives ()K (" ")/BKs(") must change slowly
near the fixed point. To evaluate T„8*, it is
therefore only necessary to calculate the deriva-
tives somewhere in the "linear region, "where
they are essentially constant. Furthermore, only
the eigenvalues have physical significance. The
location of the fixed point (and even the space of
Hamiltonians) depends on the choice of renormal-
ization transformation and need not be calculated.

A sequence of approximations for T 8~ can be
obtained from an MC simulation of the system of
interest at criticality. After the system has come
to equilibrium, the simulation provides a se-
quence of configurations from which correlation
functions can be calculated. Now apply an RG
transformation to each configuration. For exam-
ple, in the two-dimensional Ising model, one
possibility is to divide the system into 3 &3 blocks
(scale factor b= 3) and assign block spine of +1
by majority rule. Such a procedure generates a
sequence of configurations for the block spins. It
is an important feature of the method that this
sequence is equivalent to what would have been

obtained if the exact RG transformation had been
performed on H (a difficult calculation involving
an extremely large number of coupling param-
eters) and the renormalized Hamiltonian had been
simulated (also a difficult calculation). The RG
transformation can, of course, be applied to the
block spins repeatedly with the limitation that the
last transformation leaves a lattice that is large
with respect to the range of the corresponding
renormalized Hamiltonian,

The chain rule

()&g (n)) BK (n) ()&S (n))
(n t) Z ()K (n-x) ()K (n)

8 n 8 fX

together with the identities

(n)

(n-z) =
y 8 )' 8@ (n)S (" ~)) —&S ("))&8

8

and

ajar (~)')
&s ()s ()) &s ())&s ())

(n) ) n y n

provides a direct way to calculate a sequence of
approximations to T 8* as the renormalization
transformation is iterated towards the fixed point.

The effective Hamiltonian, H~"~, that corre-
sponds to the nth iteration contains all interac-
tions that fit onto a finite lattice with linear di-
mension N/b". (It is important that the smallest
system considered is still large compared to the
range of the fixed-point Hamiltonian so that any
significant truncation is avoided. ) However, it
turns out that, for the evaluation of the eigen-
values by E(ls. (3)-(7), relatively few interactions
need be considered explicitly. The effect on the
eigenvalues and eigenvectors of including more
interactions in the analysis can be investigated
directly and the approximation can be improved

TABLE I. Eigenvalues and critical exponents obtained from an MC simulation of a
two-dimensional Ising model using a 45&&45 lattice with 9&&10~ MC steps/site. The sec-
ond column gives the number of even interactions used in the RG analysis. The criti-
cal exponents are obtained from the eigenvslues in the usual way as described in Ref. 3.

Itera- Even inter-
tioz actions

Exact

2.817
2.8.87
2.887
2.957
3.012
3.006

3

1.061
1.036
1.036
1.013
0.996
0.998

1

—0.122
—0.072
—0.072
—0.026

0.008
0.004

0

7.712

7.835

7.8452

13.23 0.2812 0.1492
0.1457
0.1457

14.85 0.2524 0.1278
0.1257
0.1259

15 0.250 0.125

1.824
1.781
1.781
1.770
1.741
1.744
1.750
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TABLE II. Eigenvalues (scale factor b =2) from an
MC simulation of a two-dimensional, three-state Potts
model on an 80 &&80 lattice with 3 &&10 MC steps/site.

Iteration

2.17.5+0.005
2.200+ 0.005
2.272+ 0.010

2.32

3.6517~0.0003
3.644+0.001
3.648+ 0.006

3.673

systematically, either by including more interac-
tions in the analysis or by increasing the lattice
size.

As a test of the method, I have applied it to the
two-dimensional Ising model as mentioned above,
analyzing up to three even interactions (nearest-
neighbor, second-neighbor, and four-spin) and
one odd interaction (magnetic field). The results
are shown in Table I. They compare well with
the results of other RG approximations and are
superior to what has been achieved by standard
MC analysis, 4 for which "the d= 2 Ising lattice is,
if anything, a rather unfavorable case. '"

I have also used the method on the three-state
Potts model, ' which is of current interest be-
cause of its application to the behavior of krypton
adsorbed on graphite. ' The analysis used eight
even and eight odd interactions. The results for
the largest eigenvalue in each case (A.,' and A.,')
from a single simulation are shown in Table II.

The error estimates for the first three itera-
tions are obtained by comparison with simulations
of smaller lattices. It is difficult to give an error
estimate for the fourth iteration with the present
data. However, if we tentatively assign an error
double that of the third iteration, we obtain v
= 0.824(10), n = 0.352(20), 5 = 15.26(60), q = 0.246
(10), P=0.101(6), and y=1.445(20), which agree
quite well with series estimates' "and are con-
sistent with Suzuki's hypothesis" of "weak" uni-
versality in two dimensions (5= 15, q=-,').

In these examples I have taken advantage of
knowing the exact critical temperatures. How-
ever, this knowledge is not necessary. MC
simulation at temperatures above or below criti-
cality clearly show the iteration towards high- or
low-temperature fixed points and serve to locate
the critical temperature self-consistently.

The Monte Carlo renormalization-group method

also supplies information about the eigenvectors
and other eigenvalues. This will be discussed
elsewhere along with the convergence properties
and the application of the method to other sys-
tems.

I would like to thank Dr. V. Emery, Professor
D. P. Landau, Dr. H. DeRaedt, Professor K. Vfil-
son, and professor R. K. P. Zia for interesting
and stimulating discussions.

Note added. —I would like to thank Dr. A. N.
Berker for calling my attention to two additional
estimates of the critical exponent n for the d= 2,
three-state Potts model: de Neef and Enting"
have obtained o. = 0.42+ 0.05 from series analysis;
this value is considerably higher than that of
Zwanzig and Ramshaw (Ref. 11). Bretz" has ob-
tained an experimental value of a=0.36 from a
study of helium films on graphite, in excellent
agreement with the MCRG results.
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