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Departures from thermal equilibrium which are likely to occur in an expanding universe al-
low the production of an appreciable net baryon density by processes which violate baryon-
number conservation. It is shown that the resulting baryon to entropy ratio can be calculated
in terms of purely microscopic quantities.

It is an old idea' that the observed excess of matter over antimatter in our universe may have arisen
from physical processes which violate the conservation of baryon number. Of course, the rates of
baryon-nonconserving processes like proton decay are very small at ordinary energies, but if the slow-
ness of these processes is due to the large mass of intermediate vector of scalar “X bosons” which
mediate baryon nonconservation, then at very high temperatures with 7 ~m 4, the baryon-nonconserv-
ing processes would have rates comparable with those of other processes. However, even if there are
reactions which do not conserve C, CP, T, and baryon number, and even if these reactions proceed
faster than the expansion of the universe, there can be no cosmological baryon production once the cos-
mic distribution functions take their equilibrium form, until the expansion of the universe has had a
chance to pull these distribution functions out of equilibrium. This can easily be seen from the gener-
alized Uehling-Uhlenbeck equation® for a homogeneous isotropic gas,

dn(p,)/dt =Ek1fdpz ceedpydpy’ e dpy’
X {F(pl' P =Py 'Pk)n(Pl')‘ * 'n(f—’z')[lq; n(p1)] v [li’n(l)k)]
- r(pl' Mg P 'Pl')"(.b1)' o ”(Pk)[lin(Pl')] te [li”(Pz')]}, (1)

where # is the single-particle density in phase space; p labels the three-momentum and any other par-
ticle quantum numbers, including baryon number; and I'is a rate constant, equal, for 2 =1=2, to the
cross section times the initial relative velocity. The factors 1+ n(p) represent the effect of stimulated
emission or Pauli suppression for bosons or fermions, respectively. If at any instant, n(p) takes its
equilibrium form, then n(p)/[1+n(p)] is an exponential of a linear combination of the energy and any
other conserved quantities; so for any allowed reaction with I'+ 0, we have

n(py) n(p N1t n(p)] - [1en(p)]=n(p,) - - n(p )1 n(p,")]- - [1£n(p,)]. (2)

Under T invariance, I" would be symmetric, and the two terms in the integrand of Eq. (1) would cancel.
But even without T invariance, unitarity always gives

0=33;fdpy - +-dp,/[1en(p)]- - [12n(p )T (D, pp=by b)) =T(py =+ b =Dy b, (3)

so that the p’ integrals in (1) still cancel.® For an expanding gas there are also terms in Eq. (1) which
represent the effects of dilution and red shift, and these terms can produce departures from equilibri-
um, but of course they have no direct effect on the baryon number per co-moving volume.

This note will describe a mechanism for production of a cosmic baryon excess, based on the depar-
tures from thermal equilibrium which are likely to have occurred in the early universe. It is assumed
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here that all particles have masses below (though
not necessarily far below) the Planck mass my
=G"Y2=1,22x 10" GeV. For simplicity, it will
be assumed that the only superheavy particles
with masses above 1 TeV or so are the X bosons
which mediate baryon nonconservation; however,
it would not be difficult to incorporate super-
heavy fermions with masses m ~my in these
considerations. Aside from gravitation itself,
all interactions are supposed to have dimension-
less coupling constants. For the interaction of
X bosons with fermions, this coupling is denoted
gx- Finally, it will also be assumed that a,*N
« 1, where oy =g4*/4m, and N is the number of
helicity states of all particle species. Under
these assumptions, we can trace the following
chain of events*:

(1) At very early times, when 2T =mp, the in-
teractions of gravitons were so strong that ther-
mal equilibrium distributions would have been
established at least approximately for all parti-
cle species; for instance, by graviton-graviton
collisions.® (Of course, we do not know how to
calculate detailed reaction rates at these times,
but we can be confident that gravitational inter-
actions were strong, because this is indicated by
lowest-order calculations, and it is only the
strength of the interactions that invalidates such
calculations.) If gravitational interactions con-
served baryon number at 7 = mp, then the uni-
verse could have begun with a nonvanishing value
for the baryonic chemical potential; I assume
here that this is not the case.

(2) As ET fell below mp, gravitational interac-
tions became ineffective. The rates for X-boson
decay, baryon-nonconserving collisions (or, for
BT = my, all collisions) and cosmic expansion
may be estimated as®

Ty =~ ay my°N/[(RT)? +m ]V, )
Te= lez(kT)5N/[(kT)z +my’]?, (5)
R/R=H =1.66(:T)’N"?/mp. (6)

With ax*N <1 and my<mp, both 'y and T'c were
much less than H at k7 ~mp. However, as long
as kT remained above all particle masses, the
expansion preserved the equilibrium form of all
particle distributions, with red-shifted tempera-
ture T < 1/R.

(3) The X bosons began to decay when I'y ~H,
If at this time 27 >m y, the collisions of the de-
cay products with each other or with ambient par-
ticles would have rapidly recreated the X bo-

sons through the inverse of the decay process,
thus reestablishing equilibrium- distributions.

In order to produce any appreciable baryon ex-
cess, it is necessary that kT <my when I'y ~H,
so that the Boltzmann factor exp(—my/kT) could
block inverse decay. Equation (4) then gives T'y
~H at a temperature

kT p= (Nl/zaxmxmp)l/zy (7

so that the condition m x = kT ;, yields a lower
bound on m x

mszI/ZOlep. (8)

(For gauge bosons we expect oy =~ a, so (8) re-
quires m = 10"'N*? GeV, while for Higgs bosons
oy is presumably in the range of 107* to 1076,
and the lower bound on my would be of order 103
to 10®NY2 GeV.) Note also that (5), (6), and (8)
give I'c <H for all temperatures. This justifies
the neglect of X-boson production or annihilation
in reactions other than X decay and its inverse,
and insures that any baryon excess produced
when the X bosons decayed would have survived
to the present time.

Before the X bosons decayed, at temperatures
just above T, their number density was ny
=£(3)(T )Ny /n*, where Ny is the total number
of X (and X) spin states. Also, the total entropy
density of all other particles was s, =47k (2T ,)°
X N/45, with N now understood to include factors
of 7/8 for fermion spin states. If the mean net
baryon number produced in X or X decay is AB
per decay, and if one can ignore the entropy re-
leased in X-boson decay, then the ratio of baryon
number to entropy after the X bosons decayed was

kng/s =knypAB/sp=45L(3)(Ny/N)AB/47%.  (9)

If one assumes the subsequent expansion to be
adiabatic, both nz and s would have scaled as R"3,
so that Eq. (9) would give the ratio of baryon num-
ber to entropy of the present universe.

Strictly speaking, one should take into account
the entropy contributed by the X-boson decay
products when they finally thermalize. This in-
creases the energy density by a factor

305(3)Nxmx

mxnxp =1
T NET

®T )*N/30

>‘:1+172(

=1+ (Nyx/N)mx/N"?0 xmp)¥?,

and so decreases the ratio of baryon number to
entropy by a factor »~¥%. However, this effect
can be ignored if N>>Ny.

The crucial quantity AB in Eq. (9) can be de-
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termined from the branching ratios for X-boson
decay. For instance, suppose that an X boson
decays into two channels with baryon numbers

B, and B, and branching ratios » and 1-». The
antiparticle will then decay into channels with
baryon numbers - B, and - B,, with the same to-
tal rate, but with different branching ratios 7 and
1-7%. The mean net baryon number produced
when X or X decays is then

AB=3{yB,+(1-v)B,-7B, ~ (1-7)B,]

=3(r —-7)(B, - By,). (11)

CPT invariance gives ¥ =7 in the Born approxi-
mation. If the leading contribution to » -7 arises
from an interference of graphs with a total of /
loops, then one expects » —7 to be of order €(ay/
27)?, where € is whatever small angle character-
izes CP violation. Of course, to be more definite,
a detailed model of baryon nonconservation is
needed. However, in any given model, Egs. (9)
and (11) give a precise prediction for the ratio of
baryon number to entropy kny/s, which may be
compared with the observed value” 1072 to 107%°,

The above discussion has assumed a homoge-
neous isotropic expansion, in which the entropy
stays fixed except for the small effects of bulk
viscosity.” However, it is also possible to deal
with gross departures from thermal equilibrium
that might be produced by cosmic inhomogenei-
ties. As any part of the universe relaxes toward
equilibrium, the rate at which its entropy increas-
es will be proportional to the difference between
the entropy and its maximum value S, ,. Baryon
production vanishes in the equilibrium configura-
tion with $=S,,, so the rate of increase of bary-
on number will also be proportional to S-S _,..
Thus, the ratio of the baryon-number production
to the entropy production will be given by the ra-
tio of the coefficients of S-S, ,, in dB/dt and dS/
dt, and independent of the amount of the initial
departure from thermal equilibrium. If most of
the entropy and baryon number of the universe
were created in this way, then it is this ratio that
would have to be compared with the experimental
value of 1078 to 107 %,

Note added.—(1) Any X bosons which can me-
diate baryon-nonconserving reactions are neces-
sarily much heavier than the Z° or W*; so their
interactions can be analyzed using the weak and
electromagnetic gauge group SU(2)® U(1) as well
as the strong gauge group SU(3) as if they were
all unbroken symmetries. In this way one finds
in general there are just three kinds of bosons
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which can couple to channels consisting of a pair
of ordinary fermions, with these channels not all
having equal baryon numbers: They are an SU(3)
triplet SU(2) singlet X of scalar bosons with
charge - 3; an SU(3) triplet SU(2) doublet X, of
vector bosons with charges —3, — 3; and an
SU(3) triplet SU(2) doublet of X’ of vector bo-
sons with charges %, — 3; plus their correspond-
ing SU(3)-3 antibosons. For all these bosons,
the decay channels are X -gl,57 and X - g/, qq,
with ¢ and [/ denoting general quarks and leptons.
Hence B,=+% and B,=~% in Eq. (11). This anal-
ysis incidentally shows that lowest-order baryon-
number-nonconserving interactions always con-
serve baryon number minus lepton number, so
nucleons may decay in lowest order into antilep-
tons, but not leptons.

(2) Detailed calculations have been carried out
with Nanopoulos® to estimate the difference in the
branching ratios 7,7 for X - gl and X - g/ that
arises from the interference of tree graphs with
one-loop graphs. In general, a difference be-
tween » and 7 could arise from one-loop graphs
in which a scalar or vector boson is exchanged
between the final fermions, even when all fermi-
on masses are negligible compared with the tem-
perature, provided that CP invariance is violated
in the Lagrangian, or is already spontaneously
broken at these high temperatures. In various
grand unified theories there are relations among
the various couplings of Higgs or gauge bosons
to fermions, which eliminate most of these con-
tributions to » —¥. However, there will still be
a contribution to » -7 in X decay from the ex-
change of X ¢ bosons of different species. Since
Higgs-boson exchange is naturally weaker than
W* or Z° exchange at ordinary energies, it is pos-
sible that the CP-invariance violation is maximal
in the coupling of fermions to Higgs bosons, in-
cluding X bosons. In this case, » -7 is of order
ay/27~107%. With B, -B,=1 and Ny/N~ 1072,
Egs. (11) and (9) then give a ratio of baryon num-
ber to entropy of order 107°,

(3) The masses of superheavy gauge bosons
were estimated in grand unified gauge theories
to be of order 10'® GeV, by Georgi, Quinn, and
Weinberg.® (As shown there, this estimate ap-
plies for arbitrary simple grand unified gauge
groups, under reasonable general assumptions
on the spectrum of fermions. The same assump-
tions yielded a Z°-y mixing angle with sin%§
~0,2.) Presumably the Higgs-boson masses are
of the same order. Decay and inverse-decay
processes arising from the gauge coupling of vec-
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tor bosons to each other and to Higgs bosons and
fermions will bring all these particles into ther-
mal equilibrium at a temperature given by Eq.
(7) [with N= 100, oy~ 1072, my= 10" GeV] as of
order 10" GeV. Hence there is no need to invoke
gravitational processes at the Planck tempera-
ture to establish initial equilibrium distributions,
and any preexisting baryon imbalance would have
been wiped out at 2T =~ 10'” GeV. As the tempera-
ture dropped below 10*® GeV all superheavy gauge
bosons and some of the superheavy Higgs bosons
would have disappeared. However, if the lightest
superheavy bosons happen to be X¢ bosons, then
these bosons would have survived as the temper-
ature fell below their mass, because the only de-
cay channels open then would have been two-fer-
mion states, and oy <a for Higgs-fermion coup-
lings. The decay of these scalar bosons when the
temperature finally dropped to 2T = 10* GeV
<m(X;) would then produce the baryon excess
estimated in Note (2).

I am grateful for valuable conversations with
J. Ellis, D. Nanopoulos, A. Salam, L. Susskind,
F. Wilczek, C. N. Yang, and M. Yoshimura.
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