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Theory of the Heats of Formation of Transition-Metal Alloys
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A simple expression for the heat of formation AH of transition-metal alloys is derived with-

in the tight-binding approximation that has the form 6H =f (N) AN, where N and b N are the

average and difference in number of valence d electrons, respectively. The prefactor f(N) is
most negative for N lying near the middle of the series and it becomes positive towards the

edges. The theory gives good agreement with Miedema's semiempirical values of AH.

Recently Boom, de Boer, and Miedema' have
developed a highly successful semiempirical
scheme that reporduces the observed signs of the
heat of formation of about 500 alloys of the sim-
ple and transition metals. It is a natural exten-
sion of Pauling's' original description of electro-
negativity in which the heat of formation ~H was
proposed to be proportional to the square of the
electronegativity difference hX. Boom, de Boer,
and Miedema, ' in order to overcome the problem
that Pauling's scheme always predicts a negative
&H, included a repulsive contribution proportion-
al to the square of the charge-density mismatch
at the Wigner-Seitz boundary &Ã"'. Thus

where the attractive charge-transfer term was
originally' assumed proportional to the square of

the difference in the work function 4p. Unfortu-
nately, good agreement with the experimental
sign of 4H could only be achieved by adjusting the
experimental work function p, sometimes by as
much as &p itself, to new values' p*. It was,
therefore, not clear what fundamental significance
should be attached to the final coordinate p*. In
this Letter a microscopic theory of the heat of
formation of transition-metal alloys will be pre-
sented that not only gives good agreement without
any adjustable parameters to Miedema's semi-
empirical values of &H, but also suggests a dif-
ferent interpretation of the underlying physics of
the coordinate p* from that previously' ascribed
to it.

The cohesive energy of the pure transition-met-
al constituents arises' ' from the strong bonding
of the valence d electrons, which are well de-
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scribed' by the tight-binding approximation in
which the center of gravity of the d band in the
solid is assumed" ' equal to that of the atomic d
level. The energy in the solid is then given sim-
ply by the sum of the one-electron band energies,
so that the cohesive energy may be equaled to the
d-bond contribution" '

Uh, „d(N) = f (E —C)n(E) dE, (2)

where N and n(E) are the number of valence d
electrons and their density of states respectively,
and Eq and C are the Fermi energy and center of
the d band respectively. By assuming a rectangu-
lar d-band density of states of width W, Friedel'
showed that the bond energy displayed the para-
bolic trend with band filling,

U~„,(N) =-N(10-N)W/20, (3)

which is observed experimentally in the cohesive
energy across the nonmagnetic 4d and 5d series.
It follows therefore, that-the change in energy on
forming the A.B alloy can be written as the differ-
ence in the one-electron band energies

~=f "En„,(E)ds

2f -' En„(E)dz 2f -'-E,n, (z)dE, , (4)

provided the renormalization in the relative posi-
tion of the d bands &C =C&- C& because of charge
transfer on forming the alloy can be neglected.
The latter is, in fact, a very good approximation
in transition-metal alloys as has been demon-
strated quantitatively by van der Rest, Gautier,
and Brouers' who have studied the Sd alloys of
Fe and Ni within the tight-binding coherent-poten-
tial approximation. Figure 4 of their paper clear-
ly illustrates that &H is not very sensitive to this
renormalization in 4C. Even though there might
be a sizable flow of d charge when the constituents
are well separated in the periodic table (see Fig.
1 of Ref. 8), this results in only a small change
in ~K because of cancellation between the change
in the sum of the one-electron band energies and
the double counting' contribution respectively.
Thus, as a first approximation, ~ does not de-
pend expLicitly on the charge transfer Q, as can
be seen from Eq. (4) where only the total density
of states n„s(E) enters in the alloy sum and not
the individual partial contributions.

The heat of formation is evaluated by assuming
that the bonding in the dgso~de~ed A.& alloy is well
described like that in the pure constituents' ' by
a simple rectangular d-band density of states,
which is centered midway between the two atomic

where 8' is the width in the absence of diagonal
disorder" (&C =0). The left-hand side of Eq. (5)
is simply the second moment of a rectangular den-
sity of states (normalized to unity) of width W»,
whereas the right-hand side contains the contribu-
tions to the second moment from the paths of
length 2 in the alloy arising from hopping to the
nearest neighbors and back and hopping twice on
the same site respectively. Thus, the alloy width
may be written

W„e = [ 1 + 3(b,C/W) ] 'i W. (6)

The heat of formation &II may now be evaluated
directly from Eq. (4). Expanding Eq. (6) to sec-
ond order, I find

~II =4KO+ 4K~,

where

WHO /W = —-' (6N) 2 —-'EN(b, C/W)

—,N(10 —N) (4C/W)',

6H, /W = —-'(5 N) hN(—d,V/V), (9)

where N is the average number of valence d elec-
trons per atom. The first term ~, is the heat
of formation obtained from Eq. (4) assuming that
the pure constituents have the same atomic vol-
ume as the alloy V (assumed determined by
Vegard's law), while bH, is the size-factor con-
tribution obtained from Eq. (3) in bringing the
pure constituents to their observed equilibrium
atomic volumes V& and V~. It results from the
first-order change in the &- and &-band widths
as the nearest-neighbor distance changes from
that of the A.B alloy to that observed for the pure
components assuming that the tight-binding hop-.
ping parameters fall off inversely with distance
to the fifth power. " Because of the symmetric
nature of the d-bond energy, ~, is zero for N =5.

The accuracy of this simple analytic expression
(8) for bH, has been demonstrated elsewhere' "
by comparison with the tight-binding coherent-po-

d levels C& and C& with a width W» determined
by the second moment of the exact average den-
sity of states of the alloy. Because the pth mo-
ment of the density of states associated with a
given atom can be written within the tight-binding
approximation in terms of all the paths of length

p that start from the given atom and return to it,
I find that 8'» must satisfy the equation

(5)
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tential-approximation results' for the 3d alloys
of bcc Fe and fcc Ni in which the densities of
states n„~(E) were computed directly. It, there-
fore, remains to provide a simple interpretation
of the three contributions to ~,. The first two
terms represent the result within the virtual-crys-
tal approximation in which all sites in the alloy
are equivalent and can be characterized by the av-
erage atomic d level &. The width of the alloy d
band in this approximation remains that of the
pure constituents, namely 8'. The attractive first
term of Eg. (8) results from the fact that Eg. (3)
is a concave parabola, so that the d-bond energy
for the average number of electrons N is always
lower than the average of the bond energies for
the individual constituents N& and N~. The second
term in Eq. (8) is repulsive, because the center
of gravity of the alloy d band lies above that of the
more numerously populated pure-metal d band,
since the atomic d level becomes more tightly
bound as the valence N increases. The first two
terms in Eg. (8) give a net repulsive contribution
for transition metals that is countered only by

going beyond the virtual-crystal approximation
and including the attractive second-order contri-
bution proportional to (hC)', which results from
treating the A and B site d levels as + &C/2 with
respect to the average background of the virtual-
crystal approximation. This attractive contribu-
tion to ~, is very similar to that proposed by
Pauling, ' in that &C is clearly a measure of the
difference in the free atom's ability to attract d
electrons and hence a measure of the electro-
negativity difference hX. In fact, if we exclude
the group-VIII metals, then & is proportional
to M within either the 4d or 5d series, because
both Pauling's' electronegativity and the atomic
d level" vary linearly across the series. More-
over, the prefactor multiplying this contribution
to btI, is directly dependent on the strength of
the metallic bond in the alloy Uh, „d(N) in a manner
reminiscent of Pauling's constant of proportion-
ality that depended on the number of resonating
bonds per atom. However, I must stress that
this contribution in transition metals is not ex-
plicitly associated with the flow of charge' Q and
so is not directly ionic in character. Rather it
reflects the increase in d-bond strength through
the widening of the alloy bandwidth ~» com-
pared to the pure constituents due to their elec-
tronegativity difference [see Egs. (3) and (5)].
A similar widening occurs for the energy gap be-
tween bonding and antibonding states in covalent
systems described by the Huckel" (& states in
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hydrocarbons) and Phillips" (sp' states in semi-
conductors) models.

4H may be written as a single term by insert-
ing into Eq. (8) the known" linear dependence of
the atomic d level on valence N, namely

AC =-RAN,

~,= -,' W[(u —,-",) —,—;u'N(10—N)](~N)2,
A

where k =k/W. Thus hH, is proportional to the
square of ~N with the constant of proportionality
dependent on the average band filling N.
may also be expressed in this form by fitting the
equillibrium atomic volumes" of the 4d or 5d
transition-metal series to

V =V [01+o.(N-N )0). (12)

Substituting Eq. (12) into Eg. (9) and keeping
terms to second order in &N, we find

n (5 —N)(N„- N)
12 [1+@(N—N )'] (13)

Figure 1 compares the theoretical values of
&Hj(&N)' for different average band fillings N

with Miedema's semiempirical values" for the
4d alloys with 4N (4. I have taken k =1 eV,' W
=10 eV,' e =0.0308, and N, = 7.3." I have not in-
cluded the alloys with larger values of &N in the
comparison because in this' "Letter terms to
only second order in &N have been retained.
(The other two 4d alloys that have been studied
experimentally besides ZrBu" and RhPd" men-
tioned in Fig. 1 are ZrRh and ZrPd' with 4N
equal to 5 and 6 respectively. Using the exact
expression (5) would lead to an increase in hH, /
(&N)' of +0.026 eV and +0.033 eV respectively,
which gives values of ~/(&N)' that are still con-
sistent with the upper bound of -0.01 eV set by
the experiment". ) We see from Fig. 1 that the
theory agrees remarkably well with Miedema's
results, the main deviation occurring for N =8.5
where the experimental value of Myles" for RhPd
favors the more repulsive theoretical value. This
had been a somewhat surprising experimental re-
sult. Rh and Pd are neighboring group-VIII met-
als with the same Pauling' electronegativity val-
ue of 2.2 and with atomic volumes that differ by
only 6%,"so that chemically they were thought of
as very similar elements. However, because the
size-factor contribution &H, increases as N moves
towards the edges of the series [see Eg. (9)], the
6% volume difference between Bh and Pd is suffi-
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choose p* a constant for the group-VII and -VIII
elements in order to force &p* to vanish and

thereby the contribution ~,. Furthermore, if
the other coordinate n"' is fitted to an expression
of the form (12), then Miedema's second term is
very similar to ~„ the deviation in &H, /(&N)'
being less than 0.03 eV for all values of N except
N =8.5.

In conclusion, the theory has provided the first
a Priori justification for the use" of the coordi-
nates N and &N to describe transition-metal alloy
behavior. The present tight-binding theory can
be extended to include the sp-bonded materials
as well, so that a fully microscopic theory of me-
tallic heats of formation within the periodic table
may be achieved.

I should like to thank Dr. J. C. Phillips for very
helpful comments on the first draft of this Letter,
and Dr. C. M. Varma for discussions during the
early stages of the research.
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FIG. 1. The heat of formation 2 B for the 4d series
divided by the square of the difference in number of va-
lence d electrons (4N)' as a function of the average
number of valence d electrons ¹ The full curve is the
theoretical b, H/(bN) 2, whereas the dashed curve ex-
cludes the size-factor contribution. Miedema's {Refs.
1 and 16) values for 4d alloys with 4N ~ 4 are repre-
sented by squares with the points for common N con-
nected by lines. The two experimental points are
RhPd (Ref. 14) (triangles) and ZrRu (Ref. 15) (inverted
triarg1es), where the latter is from a value for dG,
not AH.

cient to give the large positive heat of formation
observed.

The explanation for Miedema's empirical" suc-
cess is apparent from looking at his final choice
of parameters p* and n'. '. Apart from the group-
VIII elements his coordinate p* is found to vary
linearly with N across the 4d and 5d series, so
that the first term in Eq. (1) can be identified di-
rectly with ~,. However, because his prefactor
P is a constant whereas Eq. (11) passes through
zero close to N =8, Miedema was constrained to
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Departures from thermal equilibrium which are likely to occur in an expanding universe al-
low the production of an appreciable net baryon density by processes which violate baryon-
number conservation. It is shown that the resulting baryon to entropy ratio can be calculated
in terms of purely microscopic quantities.

It is an old idea' that the observed excess of matter over antimatter in our universe may have arisen
from physical processes which violate the conservation of baryon number. Of course, the rates of
baryon-nonconserving processes like proton decay are very small at ordinary energies, but if the slow-
ness of these processes is due to the large mass of intermediate vector of scalar "Xbosons" which
mediate baryon nonconservation, then at very high temperatures with kV' =re~, the baryon-nonconserv-
ing processes would have rates comparable with those of other processes. However, even if there are
reactions which do not conserve C, CP, 7, and baryon number, and even if these reactions proceed
faster than the expansion of the universe, there can be no cosmological baryon production once the cos-
mic distribution functions take their equilibrium form, until the expansion of the universe has had a
chance to pull these distribution functions out of equilibrium. This can easily be seen from the gener-
alized Uehling-Uhlenbeck equation' for a homogeneous isotropic gas,

dn(p, )/dt =Q» f dp, ~ ~ ~ dp, dp, ' ~ ~ ~ dp, '

x 1F(p,' ~ ~ p, ' -p, ~ ~ p, )n(p, ') ~ ~ ~ n(p, ')[I+ n(p, )] ~ ~ ~ [I+ n(p„)]
—F(pl Pa-Pl' "P l')n(pl) n(pa)[I+ n(pl')] [I+n(p g')]),

where n is the single-particle density in phase space; p labels the three-momentum and any other par-
ticle quantum numbers, including baryon number; and l" is a rate constant, equal, for k =l = 2, to the
cross section times the initial relative velocity. The factors I+n(p) represent the effect of stimulated
emission or Pauli suppression for bosons or fermions, respectively. If at any instant, n(p) takes its
equilibrium form, then n(p)/[1+ n(p)] is an exponential of a linear combination of the energy and any
other conserved quantities; so for any allowed reaction with I'g 0, we have

n(p, ') ~ ~ ~ n(p, ')[1+n(p, )] ~ [I+ n(p„)] = n(p, ) ~ ~ ~ n(p, )[1an(p, ')] ~ ~ [ I+ n(p, ')J.
Under T invariance, F would be symmetric, and the two terms in the integrand of Eq. (1) would cancel.
But even without T invariance, unitarity always gives

0 =Q,f dp, ' ~ dp, '[1+n(p, ')] [1+n(p, ')][I (p, ~ ~ p„-p, ' ~ ~ p, ') —I (p, ' ~ p, ' —p, ~ ~ p„)], (3)

so that the p' integrals in (1) still cancel. ' For an expanding gas there are also terms in Eq. (1) which
represent the effects of dilution and red shift, and these terms can produce departures from equilibri-
um, but of course they have no direct effect on the baryon number per co-moving volume.

This note will describe a mechanism for production of a cosmic baryon excess, based on the depar-
tures from thermal equilibrium which are likely to have occurred in the early universe. It is assumed
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