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%'e have studied the energy distributions of Li, Be, B, C, N, 0, F, Ne, Na, Mg, Al,
and Si emerging from high-energy proton-xenon and proton-krypton collisions in the 20
& P;„,& 400 GeV/c momentum range. Based on the fragment mass dependence of the

slope characterizing these energy distributions, there is a natural division of the frag-
ments into two groups. The production of fragments heavier than carbon can be under-

stood in terms of a two-body disintegration of a residual nucleus possessing a single

slope parameter.

With the successful operation of the warm-gas-
jet facility' at Fermi National Accelerator Lab-
oratory (FNAL) providing thin targets of heavy

gases, it has become possible to employ elec-
tronic techniques to study the production charac-
teristics of low-energy nuclear fragments at the
highest available proton energies. In this paper
we present data from Kr and Xe targets and dis-
cuss an interpretation in terms of a simple mod-
el for heavy-fragment emission. Prom compari-
sons of these data with previous light-fragment
studies, there is evidence for a two-step process
in p-nucleus collisions; first, there is a simul-
taneous emission of a large number of nucleons
(-20) which may coalesce into light fragments.
The remaining excited nuclear remnant subse-
quently decays into heavy fragments via a quasi-
two-body d.ecay.

This experiment was conducted in the internal-
target area of FNAL. Targets of 100 ng/cm'
were created by injecting hydrogen-noble-gas
mixtures through a de Laval nozzle into the cir-
culating proton beam. The pressure pulse was
maintained for 2.7 sec, coinciding with the accel-
eration time of the beam from 20 to 400 GeV/c,
during which 10"protons/sec intersected the tar-
get. Fragments emerging from the p-nucleus
collisions were detected by one of four 4E-E-
veto telescopes, each consisting of three surface-
barrier Si detectors. These telescopes were
mounted symmetrically around the axis of the in-

ternal-target magnetic spectrometer with a direct
view of the gas jet. Data were taken at twelve
approximately equally spaced intervals between
33' and 76' with respect to the proton beam. Tar-
get mixtures for the data reported here were 90%%uo

H2-10%%uc Xe and 82%%uc H2-18%%uo Kr by partial pres-
sures.

Fragments were accepted which satisfied a hE
~ E veto trigger within preset energy windows.
Discriminator levels were optimized for frag-
ments heavier than lithium with low kinetic ener-
gies (F. & 120 MeV). Identification by AZ', where
A is the nucleon number and Z the charge, was
determined through an empirical function of the
energies deposited in the LE and E detectors. A

typical spectrum indicating the presence of ele-
ments B to Si is shown in Fig. 1.

A detailed analysis' of fragment energy spec-
tra revealed no dependence upon beam momen-
tum; thus, the data presented here are summed
over beam momenta. Furthermore, the angular
distributions evidenced only a weak correlation
with emission angle. Laboratory kinetic energy
distributions of B, N, Na, and Si from p-Xe and
p-Kr collisions are shown in Fig. 2. Multiple-
scattering corrections have been included. A

slow variation of the slopes with fragment mass
is apparent; similar spectra are observed from
both krypton and xenon targets. To parametrize
our data we used the formalism of Goldhaber'
and Westfall et a/. ,

' which provides a simple de-
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FIG. 1. The A.Z2 distribution of the nuclear frag-
ments produced in p-Xe collision. The proton-beryl-
lium r~~~e has not been plotted to avoid compressing
the scale.
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FIG. 3. The inverse logarithmic slope as function of
fragment nucleon number. The straight lines repre-
sent the functional form T' =T {1-A~/AR). The values
of T' and A.~ were obtained by simultaneously fitting
the energy spectra of fragments with 7(Z& 14.
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netic-energy spectra from this excited remnant
are given by a Mmmrell-Boltzmann-type distribu-
tion, where E*, the fragment energy in the rem-
nant rest frame, is shifted by the Coulomb bar-
rier energy B'. When transformed into the lab-
oratory by the small remnant velocity v, along
the beam direction, the differential cross section
becomes
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FIG. 2. The natural logarithm of the number of
events, corrected for losses due to multiple scattering,
is plotted as a function of fragment kinetic energy.
Fragment identity is indicated on the distribution curve.
curve.

where N', 8', and T' represent a normalization
constant, the Coulomb barrier energy, and the
inverse logarithmic slope of the energy spectrum,
respectively. The fragment energy F.* is given
by E*=E+E, —2(EE,)"'cose, with E the meas-
ured laboratory energy of the fragment (Mz), E,
the energy from remnant motion, F.p @JANf v and
8 the laboratory angle. By fitting the observed
differential spectrum to Eq. (1), the constants
B', v, and T' were determined for each fragment.

By examining T' as a function of the fragment
nucleon number Az (Fig. 3), we deduce that T' is
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approximately a linear function of Af for masses
larger than carbon, for both Kr and Xe targets.
We interpret this observation as evidence sug-
gestive of a two-body decay process wherein the
linear variation of T' with fragment mass is due
to two-body kinematics. In contrast to earlier
models, ' ' we conjecture that in the first stage
of ap-nucleus collision, a number of nucleons
are ejected leaving an excited remnant of A~ nu-
cleons which subsequently decays via a quasi-
two-body mode. 4 In this picture

T' =T/v = T(1-A~/A„), (2)

where v represents the effect of two-body kine-
matics and T denotes the inverse logarithmic
slope of the energy in the remnant frame. Equa-
tion (1) is then modified by E*-E*v, B'-B, and
TI -T.

Relying on the above conjecture, we can simul-
taneously fit the kinetic energy distribution of
fragments with 7 (Z ( 14 for a common value of

A„, T, and v. We find a confidence level great-
er than 80%%up for each fragment and note that the
values obtained are in good agreement with the
individual fits. However, the spectra of Li, Be,
B, and C are not well described with these over-
all parameters, yielding confidence levels of less
than 0.01%. The straight lines in Fig. 3 represent
Eq. (2) with A„and T determined by simultaneous
fits for fragment charge in the V~Z ( 14 range.
We conclude that the production of the higher-
mass fragments, nitrogen to silicon, is well de-
scribed by this model with a quasi-two-body de-
cay mode of a remnant with A„nucleons and in-
verse logarithmic slope (apparent temperature')
T. Values of the parameters obtained are T(Kr)
= 14.5+ 1 MeV, T (Xe) = 15.0+ 1 MeV, A„(Kr) = 60
a 5, AR(Xe) = 110+ 10, v(Kr) = (0.007+0.001)c, and

v(Xe) = (0.002+ 0.001)c. The values for T are con-
sistent with a similar analysis at 5 GeV.

A description of light-fragment production is
afforded by a rather different model. ' Particle-
yield experiments, soon after the alternating-
gradient synchrotons came into operation at
CERN and at Brookhaven National Laboratory,
revealed a surprisingly high ratio of d and t to
proton fluxes in the GeV/c momentum range. ' "
Subsequently, Butler and Pearson argued theo-
retically that the observed production of deuteri-
um could be described by the coalesence of the
emitted nucleons into light nuclei via final-state
interactions. ' A phenomenological formula was
developed to relate fragment distributions to

those of protons'

d'v(A)
dE dQ

1 4', ' " ' d'o (proton)~A
A! 3oom[E(E +2m)]' ' dEdA

where E is the laboratory kinetic energy per nu-
cleon and A is the nucleon number; the proton
nucleus cross section is o, and m is the nucleon
mass. This equation gives the probability of ob-
serving a fragment that has coalesced from a
number of nucleons which have emerged within a
momentum sphere of 4', '/3. We have tested
this model using the data of Ref. 4 and find good
agreement between H and He spectra suggesting
that the coalescence mechanism gives a good de-
scription of light-fragment production for low ki-
netic energies (30 to 60 MeV). Insufficient data
for Li to C fragments preclude a similar test for
these nuclei. In that this model does not require
thermal equilibrium between light fragments
formed by coalescence and heavier fragments
emitted from the breakup of a nuclear remnant,
their apparent temperatures do not have to be the
same. All the model requires is the simultane-
ous emission of nucleons, which may take place
promptly. We may speculate, then, the following
description for the breakup of a heavy nucleus
excited by a high-energy proton: emission of a
large number" of nucleons which may occur
promptly, "'"some of which coalesce to form
light fragments, followed by a two-body decay of
the remnant, which yields the heavier fragments
with a characteristic inverse slope of approxi-
mately 15 MeV for the kinetic energy distribution
in the remnant rest frame. There are clear ex-
perimentally testable consequences of this mod-
el: (a) there are large numbers of nucleons (20-
40) emitted in association with fragment produc-
tion"; (b) with a heavy fragment of mass Az there
is another fragment of mass A~ -A& produced in
coincidence for Af & 12. If these features are
shown in future experiments, the intriguing ques-
tion of possible radial compression and creation
of compressed nuclear matter will naturally
arise In a 3-G.eV/c emulsion experiment, ob-
servation" of stars with only two dark tracks
was reported. Although they had no fragment
mass or residual mass determination, they con-
cluded that the tracks were two-body decays into
two approximately equal-mass objects. We ob-
serve an asymmetric two-body decay.
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Using pulsed optical excitation we have measured the g factors of twelve byperfine lev-
els (&=1 through 6) of the A2Z&~&+ state of OH by observation of quantum beats. The re-
sults are consistent with Hund's case (b) coupling to within the experimental uncertainty
of 0.35/p (principally limited by magnetic field calibration) . However, the ratios of the g
factors of a given hyperfine doublet, which are independent of field and accurate to about
0 15 fp show significant discrepancies from theory.

Because of the ubiquitous nature of the OH free beats, in molecular spectroscopy. It also pro-
radical, its properties are of interest to investi- vides motivation for further calculations of the
gators in such diverse fields as astrophysics, magnetic properties of molecules.
combustion studies, atmospheric physics, and The experiment consists of exciting a sample
molecular spectroscopy. The decay of the lowest- of OH free radicals in a de magnetic field with

lying electronic excited state via the ultraviolet a short pulse of light from a dye laser and ob-
transition (A Zz, to X'll) has been studied exten- serving the oscillations superposed on the fluo-
sively. ' Recently, the use of tunable dye lasers rescence. If the bandwidth of the laser is greater
has introduced a new level of versatility and than the Zeeman splitting of the molecular levels,
sophistication in the study of this molecule. ' In the molecule is excited to a superposition state
this Letter we report the direct measurement of of several Zeeman components and the resulting
the g factors of the v =0, A'Z~, excited state of fluorescence exhibits quantum beats. The angu-
OH by time-resolved excited-state spectroscopy. lar frequency of these beats is given by co

This follows the lead of Wallenstein, Paisner, = 2gzpsB/@ where g~ is the g factor of the in-
and Schawlow and demonstrates the utility of dividual hyperfine states, p. I, is the Bohr mag-
time-resolved techniques, particularly quantum neton, and B is the applied magnetic field. Quan-
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