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Anomalous Frequency-Dependent Conductivity in Disorderedone-Dimensional Systems
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Conduction by classical charge carriers is investigated for a one-dimensional system inter-
rupted by barriers arith a random distribution of activation energies. Under certain conditions
the transport properties are dominated by disorder, and the model predicts an anomalous low-
frequency conductivity a(~) -( i~)',-with v=(l T/T )/(l+T—/T ), for T &T, and a mobility
transition at T =T . The model is shorn to describe recent experiments on the one-dimen-
sional superionic conductor hollandite (K&,4Mgo 7&Tir. 230iej

The transport properties of real (quasi) one-
dimensional (ID) systems are inherently sensi-
tive to the presence of imperfections and disor-
der. ' In this Letter we investigate classical 1D
charge transport and represent the inQuence of
imperfections by potential barriers with a ran-
dom distribution of activation energies. We dem-
onstrate that this randomness can completely
dominate the diffusive or low-frequency behavior
of the system. In particular, an exponential dis-
tribution of large activation energies is shown to
lead to an anomalous power-law dependence of
the low-frequency conductivity, with a tempera-
ture-dependent exponent. Under certain ideal-
izations we also predict the existence of a finite
delocalization temperature above which the 1D
dc conductivity becomes nonzero. The anomalous
conductivity behavior predicted by our model is
somewhat similar to that observed in certain
amorphous materials. '

We shall compare our theoretical results to

those obtained experimentally on the 1D ionic
conductor hollandite' (K„~Mg, »Ti»,O„). In this
compound the mobile K' ions reside in substo-
ichiometrically (- —,) occupied, noncommunicating
channels. The state of order within these chan-
nels has been analyzed by diffuse-x-ray experi-
ments. These results indicate that the intrinsic
barrier for the diffusion of the K' ions is only of
the order of 0.1 eV. Because of the very high
anisotropy of the ionic mobility it must, however,
be expected that the macroscopic conductivity is
dominated by the effects of crystal defects and
impurities which impose additional barriers of
variable height on the long-range ionic motion.
The idealized variable-bax~ie~ model which we
use is very simple, so as to keep the number of
parameters small, but nevertheless be adequate
to describe the situation in hollandite. We fur-
ther believe that the general features of our re-
sults should be of fairly universal importance
for 1D transport in real systems.
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We consider a classical 1D conducting system
whose intrinsic properties can be described by a
diffusion constant

D =a2F
0 0

ity density

p,(T)I', n, &r &fl,
p(r) =

0, otherwise,
(8)

(or a mobility p, =D,/kqT), where a is a hopping
distance and I"0 a transfer rate. We further as-
sume the existence of imperfections which divide
the 1D system into segments of average length

The charge transfer between adjacent seg-
ments, say n and n+ 1, is governed by a ther-
mally activated process,

r„~„+,= I'„+, „=f, exp[-4„„+,/kBT], (2)

The high-frequency response of the system is
determined by its intrinsic properties (D„p,);
i.e. , by the processes within the segments. We
are, however, interested in low frequencies,

(u «(a/L, )' I"„
and temperatures such that

(4)

where 4„„+,represents an activation energy and

f, an effective attempt frequency given by

for the transfer rates I „„+„where
a=1 —T/T

0; =f, exp [-b, /k, T], i = 0, 1. (10)

It can be shown' that the experimental results on
hollandite imply the assumption of a strongly de-
creasing W(b), and the chosen exponential form
of Eq. (7) is convenient for the mathematical an-
alysis of the model. The lower cutoff 4, has to
be large enough to satisfy Eq. (5), and for our
subsequent discussion it is important that Qy

«00.
Diffusion equations corresponding to Eq. (6)

have recently been investigated in some detail'
for general distributions p(I') of the transfer
rates. The dynamical quantities of the system
can be expressed in terms of infinite continued
fractions g(&o) of the form'

r„„„«(e/L)r,. (5)

In this limit the dynamics of the system is dom-
inated by the intersegment transfer rates 1 „„„,
and can be described by coupled rate equations
for the charges q„on the segments,dq„eLE(t)

dt
— Q I'„„„(q„„-q„)+

k T ffq„„, (6)
a=f1 B

where e is the charge of the individual charge
carriers and E(t) =E,e' ', the external electric
field. Equation (6) simply relates the transfer
current J„„„to the density difference across
the barrier, p„(L/2) —p„+,(-I /2), where p„(x),
—L/2 &x &L/2, is obtained from solving the in-
trinsic diffusion equation (with the appropriate
boundary conditions) within each segment. ' We
note that local-field effects can be neglected,
and that a random distribution of segment lengths
does not seen to have important qualitative ef-
fects in the limit we are considering.

We now assume that the activation energies
+ y are independently distributed according to

a probability density

J'W~ exp(-b/kgT ), b, o
&d &hi

W(6)= i
( 0, otherwise,

which, according to Eq. (2), leads to a probabil-

1 1
gruff= fdrp(l ) —+I —f(d+ g~gg

(12)

This g f f(fd) can be considered to define a non-
random homogeneous system with an effective
transfer rate

raff((d) =

gruff(~)[gcff((d)

—i(d] /( —tet )q

which, in general, is frequency dependent. ' For
a nonrandom system, on the other hand, the con-
ductivity can easily be evaluated from Eq. (6).
Using linear-response theory, we obtain

o(e) = (e'n, L'/k, T) ref f(~), (14)

where n, is the density of charge carriers. We
emphasize that the determination of the conduc-
tivity as given by Eqs. (12) to (14) is not implied

I' . 1-i~+
1

+ ~ ~ ~

~23

At least for the calculation of single-particle cor-
relation functions it has been shown' that in the
low-frequency (long-time) limit the correspond-
ing distribution function f (g) can be replaced by
a 6 function located atg, ff(fd) which is determined
by
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directly by the arguments of Ref. 6. Qn a large distance scale, however, appropriate to our small-
frequency limit, I,&&(cv) should represent the correct behavior of the random system, as can be demon-
strated by an explicit scaling argument. On the other hand it is interesting to note that Eqs. (12) to
(14) also lead to the exact high-frequency conductivity of a random system described by Eq. (6).

For our specific distribution p(l") of Eq. (8) the low-frequency behavior of I', ti(cu) becomes

+~~2 ~(-i(u/0, )"~ ' "~, 0«+&1

if(~)/0, = —2/ln(- i&a/0, ), n = 0

—n/(1 —a), n & 0,

where we have neglected the lower cutoff in p(I ), i.e., 4,/k&T-~. This is the main result of our
idealized model which, for o ~0, i.e., T&T, thus predicts an anomalous low-frequency behavior of
the conductivity,

v((o) = C(T)(- i(u)" (16)

with a temperature-dependent exponent

v=(1 —T/T )/(1+ T/T ).

(18)

and the residual conductivity for T & T is given by

The dc conductivity o'(0) therefore vanishes for T&T, and the system is an insulator with no proper
mobility or diffusion constant. In this sense the charge carriers are (quasi) localized, though of course
not confined to any finite region. Above T, v(~) becomes approximately frequency independent at low
frequencies and c(0) is nonzero, so that T defines a mobility transition analogous to an insulator-to-
metal transition.

We note that, according to the arguments of Ref. 8, the lower cutoff in p(I') only becomes important
for n & 0 (i.e. , T & T ) and frequencies

(0)
s n L 1 e n I

~
T 1-exp—

B

It exhibits an essentially exponential temperature
dependence if T is not very close to T .

The investigation of the channel-axis conductiv-
ity of single-crystal hollandite of the composition
K$ 5QMgo 77Ti, »O„has shown that the room- tem-
perature dc conductivity is unmeasurably small
f&10 ' (0 cm) ']. For frequencies between 1
kHz and 1 MHz, however, an anomalous ac con-
ductivity with a power-law frequency dependence
as given by Eq. (16) is observed Figure .1 shows
the frequency dependence of the real and imagin-
ary part of o for different temperatures, and the
temperature dependence of the exponent v is dis-
played in Fig. 2. These results demonstrate the
excellent and detailed agreement with the pre-
dictions of Eqs. (16) and (17), and for the sam-
ples used we deduce a value of the order of 410 K
for T~.

The prefactor C(T) in Eq. (16) is related to
the average distance L between barriers, to the
lower bound of activation energies LseL p and to
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FIG. 1. Frequency dependence of the real and imagin-
ary part of the channel-axis conductivity in hollandite
for different temperatures.
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our knowledge no other model for classical trans-
port in one-dimensional systems is ab1.e to pre-
dict this rather complex conductivity behavior.

The authors gratefully acknowledge helpful con-
versations with Professor R. Orbach. One of us
(S.A. ) would like to thank the Brown Boveri Re-
search Center and the IBM Research Laboratory
for their hospitality during the performance of
this work.

FIG. 2. Temperature dependence of the conductivity
exponent v f.see Eqs. (16) and (17)].

the effective attempt frequency f,. From a de-
tailed analysis of the experimental data we de-
duce the values I./a s 10, 6, - 0.2 eV, and f, -10"
Hz. In addition, Eq. (19) and the experimental
upper bound for o(0) of 10 ' (0 cm) ' lead to a
lower bound for +y of the order of 2 eV.

In conclusion, we have demonstrated that a
simple variable-barrier model can lead to inter-
esting and unconventional predictions for the im-
purity-dominated transport properties of one-
dimensional systems. It is able to explain the
anomalous power-law behavior of v(~) as well as
the temperature dependence of the exponent v ob-
served in hollandite. A detailed fit to the exper-
imental data, moreover, leads to reasonable and
consistent values for the model parameters. To
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Charge Retention in Deep-Inelastic Electroproduction
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We have measured the net charge of the forward hadrons electroproduced from a pro-
ton target and have observed a rise with increasing n (= Q2/2Mv). This effect is expected
in the quark-proton model as the electroproduction of hadrons becomes dominated by the
fragmentation of u quarks. The data are also consistent with jet models in which a high-
momentum leading hadron, rather than a slower hadron, is more likely to be carrying
the parent quark.

The identification of final-state hadrons as the
fragmentation products of fractionally charged
quarks is an important but experimentally elu-

sive feature of the quark-parton model. As a di-
rect test of this feature, -Feynman conjectured
that the hadrons arising from quark fragmenta-
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