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where €=1,057 is the dielectric constant of liquid He.
The He depth, d, is determined by measuring the ca-
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the cell is filled. Because of capillary action and the
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We analyze the vibrational modes of a two-dimensional electron solid, coupled to the rip-
plon modes of a liquid-helium surface, as a function of temperature and external electric
pressing field. Resonance observed experimentally by Grimes and Adams are thereby ex-

plained.

It has been expected for some time that elec-
trons trapped just above a liquid-helium surface
would form a triangular two-dimensional (2D)
solid, at sufficiently low temperatures and high
densities.!”? Experimental demonstration of a
phase transition in the trapped-electron system
has been obtained by Grimes and Adams? as de-
scribed in the preceding Letter (hereafter re-
ferred to as GA). In the present Letter, we ana-
lyze the long-wavelength vibrational modes of
the electron solid (phonons), taking into account
their coupling with ripplons (excitations of the
helium surface)., The resonances seen in GA are
interpreted as arising from the low-lying longi-
tudinal modes, at the discrete vectors §; deter-
mined by the geometry.

The vibrational frequency spectrum of the 2D
electron solid, in the absence of coupling to rip-
plons, has been given by several authors.? The
transverse phonon branch has a linear frequency
spectrum at long wavelengths, w,(q) =c,q (c;
=0.245¢%1.Y%/m at T =0). Here e, m, and n, are,
respectively, the charge, mass, and areal num- |

ber density of the electrons. Because of the long-
range 1/7 potential, the longitudinal-mode spec-
trum of the ideal electron crystal has the form of
a 2D plasmon,* w, = (2me?q/m)"2. This spectrum
is indicated by the dashed curve in Fig. 1.

The spectrum of ripplons on an unperturbed
helium surface, ignoring gravity, is given by
Q%(K) = aK3/p, where a and p are the surface
tension and density of the helium. The ripplons
of interest have wave vectors, K =G, + d;, where
_(’},, is a reciprocal-lattice vector of the electron
solid. For the triangular lattice, the magnitudes
are given by G,2=nG? (2 =1,3,4,7,9,...), where,
neglecting possible vacancies and interstitials,
G2 =8n%,/3Y%, Since q;«G,, we may, in fact,
consider £ to be independent of §. The lowest
three ripplon frequencies 2,=Q(G,) are indicated
by horizontal dashed lines in Fig. 1.

Consider a set of electrons at specified coordi-
nates #() =R() + 1(!) parallel to the surface,
where () is the horizontal displacement from
the lattice position R(). There will be a change
in energy due to interaction with ripplons, which
we may write as®

H;=S"Y2(ma/n )V? E,ZQEEJ; VE+Eoeiq.R(f)ei(&+c)-u(z), . 1)

1 qG
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FIG. 1. Schematic of the dispersion relation of the
longtitudinal coupled modes (solid curves). The dashed
lines show the uncoupled mode spectra and the verti-
cal lines represent the wave vectors excited in the ex-
periment. The resonances are labeled as in Ref. 3.

where § is restricted to the first Brillouin zone,
£#.¢ is the Fourier transform of (), the verti-
cal displacement of the helium surface at ¥, and
S is the area. The coefficient V;° has the form

(ma/ng)2Vy°=¢E, + (e~ 1)e’K2In(8/K), (2)

where € is the dielectric constant of helium, and
B-1=41 A is a characteristic distance of the elec-
tron from the helium surface. The first term in
Eq. (2) arises from interaction with the applied

pressing field E ;, while the second term reflects

the variation in the attraction of the image chargeI

due to curvature of the helium surface.

Although we are primarily interested in the be-
havior of long-wavelength, low-frequency vibra-
tions, it is necessary to take into account the
“smearing” of the electronic positions due to
high-frequency modes of the electron lattice. To
this end, we make a physically motivated approx-
imation., We shall write the displacement %(/) as
the sum of a “slow part” U, and a “fast part” Uy,
and we shall replace ¢'X*T®) in Eq. (1) by

exp (iK1 exp(K-1,))
=exp(K- U ) exp(— K> ,2)/4). 3)

The quantity (u,%, which enters the “Debye-Wal-
ler factor,” is the contribution to the mean-square
displacement from the fast modes, and we may
write?

T G
W62 - s (D) s, @

Here, ¢, is a small-wave-vector cutoff of the
“fast modes.” The logarithmic dependence on
q., characteristic of a 2D solid, arises from
fluctuations in the transverse phonon modes. The
second term in Eq, (4), which contains contribu-
tions from short-wavelength fluctuations, scales
roughly as T at high T and does to a constant at
T =0 due to zero-point fluctuations. If we assume
that c,; has its zero-temperature value, then for
densities in the range of the experiments (n, =4
x10%/e¢m?), and temperatures near the melting
temperature (T =0,4°K), we find for ¢, in the
range 40-500 cm ™!, that 0.5<W,<0.7.% At finite
temperatures, the transverse mode may be soft-
ened, which would increase W,.

We can now expand the exponentials exp (iK+1i,)
in H;, Terms of zeroth order in U lead to an
equilibrium displacement of the surface, ¢z)

« Vg, where Vg, =V; %exp(-nW,)=V, is the re-
duced coupling constant. This equilibrium dis-
placement is just the “dimple” under the electron
position.” The next terms in the expansion of
exp (R ;) lead to an effective interaction Hamil-
tonian

B =ila 3 £5.30-01VeC+ Do +ia 2 V6o (O]9 11Qa ©)
e A\GE

where Qz, and &3, are the normal-mode coordi-
nate and polarization vector for a phonon of polar-
ization . We have redefined £z to be the dis-
placement from the dimpled state. The second
term in Eq. (5) is the additional restoring force
due to the dimples. The total Hamiltonian, free

phonon plus free ripplon plus H;, is quadratic

and may be diagonalized in a straightforwg»rd man-

ner. {Note that Hy; o? =20z (0/K)ER? + 22 (K)e?l}
At small g, the secular equation for the eigen-

frequencies w(q) factors approximately into three
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parts. The first two portions describe coupled
longitudinal-plasmon-ripplon modes and trans-
verse-phonon-ripplon modes which are shifted
from the bare frequencies due to their interac-
tions. These modes, which involve in-plane mo-
tion of the electrons, can be excited by spatially
dependent ac electric fields parallel to the sur-
face. The remaining modes, of which there are
at least four at each ripplon frequency, Q,, do
not involve the phonons and are hence unshifted
from the bare ripplon frequencies. [The bare
ripplons (G + §) are at least sixfold degenerate
at g=0.] One of the unshifted ripplons (at each
G,) involves uniform vertical motion of the elec-
trons and, in principle, can be excited by a uni-
form ac perpendicular electric field, as suggest-
ed by Monarkha and Shikin.” However, an explic-
it calculation shows that, because of the difficulty
in moving electrons vertically, the integrated ab-
sorption of these modes is down by factors of
order 10™°, proportional to n,¥?n/p, compared
to the modes involving horizontal electron motion,

We now turn to the coupled longitudinal-phonon-
ripplon modes which we believe are the ones ob-
served in GA. The frequency spectra for these
modes, indicated by the solid curves in Fig. 1,
are obtained from the secular equation,

o =0 2e) - 1D VE ey =0 ©®)

For temperatures near the melting temperature,
where exp(-2W,)<0.4, the sums in Eq. (6) are
dominated by the lowest few reciprocal-lattice
vectors.

At long wavelength, for the lowest mode, the
dimples follow the electrons and the frequency
is reduced from the bare longitudinal frequency
by a factor (m/m*)V2, where m* =m(1+ 3V2/Q,?)
is the effective mass of an electron plus dimple.
At shorter wavelengths (> 102 cm™?), the fre-
quency approaches £, and is given by

w?(q) 2021+ 3V.2/w,2]" % (7)

Additional branches of the spectrum lie below
each of the higher ripplon frequencies Q,. The
two lowest ones (» =3, 4) are given by

3V,20,2

20 Voo 2
w*(q) =Q, w?2+3V,2 "

(8)

At high frequencies, there is a mode with w?(q)
=ws2+ w2 Here, w2=32,3V? is the character-
istic frequency of a single electron in a static
dimple.

800

In the presence of an ac electric field of wave
vector g, the integrated power absorption by a
coupled ripplon-plasmon mode with frequency
w(q) is

[eE ||(q)]2 <1 +%E VGZQZ(G)
m

? -G OF)

For the mode with frequency just under the rip-
plon frequencies €, this will go as V,2 and hence
be negligible for all but the lowest few modes.

In GA, the electrons are in a cylindrical con-
tainer of radius R,=1.9 cm, and the standing lon-
gitudinal waves excited are expected to be radial.
For a boundary condition of no current flow to
the walls, the modes will have their wave vec-
tors determined by J,(q;R,) =0. The first few
values are indicated by the vertical lines in Fig.
1. We interpret three of the resonances seen in
GA (W,Y, Z) as the lowest—wave-vector (g,) res-
onances, near the ripplon frequencies @,, Q,,
and ©, and a fourth resonance (X in the figure) as
the second spatial mode (g,) with frequency near
©,. Our theory predicts that the resonances lie
below the ripplon frequencies ©,, and are shifted
to lower frequencies with increasing E, and with
decreasing temperature (decreasing W,), and
that the shifts are largest for the lower-frequen-
cy resonances, all in qualitative agreement with
the experiment.

To compare quantitatively with the frequencies
given in GA, we chose ng=4.55X%10® (within ex-
perimental error) and took exp(-2W,)=0.23.
Using a value of w; determined from the disper-
sion relation in Ref, 3 and noting that E , =27en;,
Eqgs. (7) and (8) yield W=10.2, X=12.3, Y =31.4,
and Z=39,4 MHz, an essentially perfect fit to
the data, We have also fitted the experimental
frequencies at other densities and temperatures
and achieved similar accuracy with W, a smooth
function of the dimensionless parameter (see GA)
T =e*/(m,)/T. At a given density, the variation
of the resonant frequencies with £, is in quanti-
tative agreement with experiment. The W,’s in
the fit are always a little larger than we estimate,
suggesting that a somewhat softer transverse
sound velocity is required. Detailed temperature-
dependent fitting to the data near the transition
will be interesting.

In principle, coupled transverse-phonon-rip-
plon modes can be experimentally excited by in-
ductive coupling. The spectrum of these modes
is obtained from a secular equation of the form
of Eq. (6) with w, substituted for w,. The spec-
trum is qualitatively similar to that of longitudin-
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al modes shown in Fig, 1, but the characteristic
wave-vector scale is increased from 1 cm™ to a
few hundred inverse centimeters, In particular,
at long wavelengths, the lowest transverse mode
will have a frequency reduced from the bare pho-
non frequency w,(g) by the square root of m*/m.

It should be noted that the calculations in the
present paper have assumed small displacements
of the electrons, At high driving powers, the
electron displacement may be large compared to
the lattice constant and the electron velocities
may be large compared to the phase velocities of
the ripplons. Under such conditions, the elec-
trons will leave the ripplons behind, and excita-
tions may be seen at the bare phonon frequencies
w;(q) and w;(q).
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We have identified occupied surface-state bands from angle-resolved photoelectron energy
distribution curves of Au(112), Au(100), and Au(110), which are located in sp gaps of the pro-
jected bulk band structure. An approximate criterion for their possible experimental existence

is given.

- It is now experimentally well established that
the (111) faces of the noble metals exhibit occu-
pied surface states in the center of the two-di-
mensional Brillouin zone (2D BZ).!"® Dispersion
of the surface-state bands has been determined
by angle-resolved photoelectron spectroscopy
showing that these surface states exist in the gap
at point L of the bulk band structure. The ener-
getical minimum of these surface-state bands oc-
curs in the [111] direction, around which a fairly
symmetrical distribution in k space is observed.
Recently Williams et al. investigated a (211)
face of Cu,” which consists of three-atom terrac-

es of (111) orientation separated by one-atom
steps of (100) orientation {(S)-[3(111)x (100)]
structure}. They found surface states pointing
into the [111] direction of the (211)-oriented sin-
gle crystal from which they concluded that these
surface states are associated with the (111) ter-
races of Cu.

In the present Letter we report on photoemis-
sion results from a (211) face of Au, which can-
not be explained by the interpretation given in
Ref. 7. Instead, the occurrence of surface states
on the (211) face of Au appears as a general prop-
erty of the sp gap around the L point of the three-
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