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Experimental evidence is presented for an electron-liquid to electron-crystal phase
transition in a sheet of electrons on a liquid-He surface. The phase transition has been
studied for electron areal densities from Sx10 cm to 9&10 cm and has yielded melt-
ing temperatures between 0.85 and 0.65 K. The phase transition occurs at F =137+15,
where I' is a measure of the ratio of potential energy to kinetic energy per electron.

We report the first experimental determination
of a portion of the phase boundary for the elec-
tron-liquid to electron- crystal phase transition
in a classical, two-dimensional (2D) Coulomb
system. The 2D system that we have studied con-
sists of a monolayer of electrons trapped on the
surface of liquid helium. This electron layer is a
nearly ideal 2D Coulomb system for such a study
because the areal density of electrons can be var-
ied over several orders of magnitude and the He
surface is inherently clean (i.e., free of traps
and scattering centers).

Historically, Wigner first calculated in 1934
that an electron-liquid to electron-solid phase
transition should occur in the 3D Fermi system
at lme densities. ' Crandall and Williams noted
that the analogous phase transition should occur
in the classical 2D electron system at sufficiently
high electron areal densities. ' The thermodynam-
ic state of a classical Coulomb system is deter-
mined by the quantity 1 which is a measure of the
ratio of Coulomb potential energy to kinetic ener-
gy per particle. For the classical 2D electron
system this ratio becomes l' =&"'N, ' 'e'/k BT,
where N, is the electron areal density and T is
the system temperature. For «1 the kinetic
energy predominates and the system behaves like
an electron gas. At intermediate densities 1&~
& 100, the electron motions become highly corre-
lated or liquidlike. At high densities ~ & 100, the
Coulomb potential energy predominates and the
electrons are expected to undergo a phase transi-
tion to form a periodic crystalline array. An ex-
perimental determination of this phase boundary
is of interest to provide guidance for the difficult
calculations and numerical experiments that are
emerging for the melting transition in the clas-
sical 2D Coulomb solid.

In this Letter we briefly describe our experi-
mental technique and apparatus. We then sum-
marize our experimental results and compare
our phase boundary with the results of computer

experiments by others.
An excess electron outside a free surface of

liquid helium can be bound just above the surface
in a potential well formed by the combination of
the long-range classical image potential and the
short-range repulsive barrier to penetration into
the liquid. While the electron is bound in the di-
rection normal to the surface with a binding en-
ergy of 0.7 meV, it remains free to move paral-
lel to the surface. For a bound electron the spa-
tial extent of its wave function normal to the, sur-
face is =10 ' cm while the interelectron spacing
is typically 5X10 ' cm; so the electrons interact
like point charges. The experimentally accessi-
ble range of areal densities is approximately 10'
& N, & 10' cm ' which at a representative temper-
ature of 0.5 K corresponds to 2 & I"& 200.' Also,
at N, =10' Fermi energy is 0.03 K, which is
small relative to our experimental temperatures,
so that the electrons obey classical (Boltzmann)
statistics.

To detect the presence of the electron crystal,
we have employed a variant of a novel experi-
ment proposed by Shikin' and Monarkha and Shik-
in. ' Shikin suggested that when the electrons
have formed a crystal, then driving the crystal
up and down against the He surface with a uni-
form, perpendicular rf electric field should pro-
duce a series of resonances due to excitation of
standing capillary waves (ripplons) on the He sur-
face. Standing capillary waves will be resonantly
excited when an integral number of capillary-
wave wavelengths equals the spacing between
rows of electrons in the crystal and the driving
frequency matches the capillary-wave frequency
for that wavelength. That is, the resonances oc-
cur when the driving frequency satisfies the cap-
illary-wave dispersion relation &' = (o.'/p)G„' with
G„a reciprocal-lattice vector of the electron lat-
tice. Here o. and p are, respectively, the sur-
face-tension coefficient and density of liquid He.
For a triangular lattice the resonance frequen-
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cies are given by

p 25/43 3/ Bp 1/2(z /p)1/2N 3/0+3/4

where n =i'+j'+ij and i and j are zero or inte-
gers so that n = 1,3,4, V, ... .' In fact, we believe
that we have not detected the Shikin modes, but
rather have seen coupled plasmon-ripplon modes
which are described by Fisher, Halperin, and
Platzman. ' The coupled plasmon-ripplon modes
involve nonuniform horizontal motions of the elec-
trons rather than the uniform vertical motions of
the Shikin modes; therefore they couple to non-
uniform electric fields Parallel to the He surface.
These modes have absorption strengths much
larger than those expected for the Shikin modes,
and the lowest resonances occur at frequencies
which are significantly perturbed from (1).

In the experiment, we look for the appearance
of the coupled resonances as we increase l by
varying T and N, . The experimental cell consists
of a pair of 5-cm-diam circular capacitor plates,
one of which is located about 0.2 cm above the
helium surface and contains a tiny filament at its
center. The lower capacitor plate is submerged
beneath the He surface a distance d which is typi-
cally about 0.1 cm. This plate has the rf-driven
element' at its center surrounded by an annular
guard ring. A metal confining ring at the He sur-
face completes the experimental cell. The guard
ring is maintained at ground potential as is the
time average potential of the driven element.
This element is connected to a swept-frequency
broadband rf bridge spectrometer which drives
it with an rf potential of about 1 mV (rms). The
experimental cell is enclosed in a vacuum-tight
copper can and attached to a conventional 'He
refrigerator. The liquid-He level in the cell is
adjusted by condensing He into it. Appropriate
negative potentials are applied to the filament,
upper capacitor plate, and the confining ring,
and then the filament is briefly heated to deposit
electrons on the He surface. Under typical oper-
ating conditions, the surface is fully charged and
so the potential of the electron layer is the same
as the potential V„of the upper capacitor plate.
The value of N, is fixed by the values of V„andd,
and since the resonances are excited primarily
in the central region of the cell, N, is quite uni-
form. ' (Note that the positive compensating
charge resides on the submerged electrode. ) An

audiofrequency potential of about 20 mV (rms)
superposed on the potential applied to the confin-
ing ring modulates N, by an infinitesimal amount.
Synchronous detection at the modulation frequency
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FIG. l. Experimental traces displaying the sudden
appearance with decreasing temperature of coupled
plasmon-ripplon resonances. The resonances only ap-
pear below 0.457 K where the sheet of electrons has
crystallized into a triangular lattice.

then yields experimental traces that are plots of
dR/dN, versus the rf frequency v at a fixed value
of N, and T. Here R is the real part of the impe-
dance of the driven element. The experimental
signal dR/dN, is proportional to d-v~(v)/dN„
where o (v) is the frequency-dependent electron-
layer conductivity normal to the He surface. A

sequence of traces at different values of T with

N, = (4.4+ 0.4) && 10' cm ' is shown in Fig. 1.
The lowest-temperature trace in Fig. 1 displays

four prominent resonances which we have arbi-
trarily labeled ~', X, F, and &. Their measured
frequencies are 10.2, 12.3, 31.4, and 39.4~ 0.2
MHz, respectively. At V, =4.4X10' cm ', the
calculated frequencies of the three lowest modes
using (1) are 15.1, 31.1, and 38.8 MHz. Thus the
Y and & resonances are within 2%%uo of v, and v„
respectively. Furthermore, the observed fre-
quencies of the Y' and Z resonances are essential-
ly independent of T (except very near melting) and

of E&, the electric field pressing the electrons
against the surface, and both frequencies vary
with electron density as N, '/' in agreement with

(1). Resonances W and X behave in a more com-
plicated manner. Both resonances move approxi-
mately linearly to higher frequencies with increas-
ing T and to lower frequencies with increasing E&.
The frequencies of ~ and X, which have been
studied only in the limited interval 300&E& & 550
V/cm, when extrapolated to E& =0 are nearly in-
dependent of T and both fall close to v, . Fisher,
Halperin, and Platzman have proposed that the
dependences of the resonance frequencies on T
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and E& are characteristic of coupled plasmon-
ripplon modes. ' They find that the coupled plas-
mon-ripplon spectrum contains a series of reso-
nances at or below each of the "bare" resonances.
They identify the ~ and X resonances as the two
lowest modes of the n =1 series, and they find
good agreement between their calculated frequen-
cies and those we have measured. The observed
spectrum with its N, and E& dependence provides
strong evidence that the resonances are due to
coupled plasmon-ripplon modes excited by a tri-
angular electron lattice of areal density N, .'

The resonances in Fig. 1 appear rather abruptly
when T is below a threshold value of =0.457
+ 0.005 K. A reasonably precise value of the
threshold temperature T can be obtained by plot-
ting the peak-to-peak amplitudes of the strongest
resonances versus T and extrapolating to zero
amplitude. Taking T„to be the electron-liquid to
electron- crystal phase- transition temperature,
we can establish the phase boundary in the N;T
plane by repeating the T determination at a num-
ber of different values of N, . Figure 2 presents
a N, ' ' vs T plot obtained in several different
runs using several different values of the He
depth. This plot demonstrates that T is very
nearly proportional to N, ' ' as expected for a
phase boundary corresponding to a constant value
of I'. We find that ~ = 13V+ 15 at the melting tran-
sition with the uncertainty arising primarily from
the uncertainty in the He depth. ' To our knowl-
edge, this constitutes the first experimental de-
termination of a portion of the phase diagram for

an electron crystal.
The first calculation of the melting temperature

for the classical 2D electron crystal was that by
Platzman and Fukuyama. " They employed an
analytic calculation based on the self-consistent
phonon method which yielded a melting transition
near I =3. The first "computer experiment" on
the classical 2D system was a molecular-dynam-
ics calculation by Hockney and Brown" which re-
vealed the melting transition near I' =95. Thou-
less estimated ~ =78 using a dislocation model
of melting. ' A recent Monte Carlo calculation by
Gann, Chakravarty, and Chester places the melt-
ing transition in the range 110& I' & 140." This
calculation is not inconsistent with our experi-
mental result.

In this preliminary report, we have clearly
left many questions unanswered. Topics such as
the resonance linewidths, line shapes, and non-
linear effects were beyond the scope of this com-
munication.

In conclusion, we have presented strong evi-
dence that a classical 2D electron sheet crystal-
lizes into a triangular lattice at low T and high
N~,
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that we have enjoyed with our friends and col-
leagues, we particularly want to acknowledge
beneficial interactions with P. W. Anderson,
T. R. Brown, A. J. Dahm, D. S. Fisher, B.I.
Halperin, A. R. Hutson, D. Lambert, D. R. Nel-
son, P. M. Platzman, V. B. Shikin, and C. L.
Zipfel. We thank R. C. Gann and G. V. Chester
for a stimulating conversation and permission to
mention one of their results prior to publication.
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FIG. 2. Portion of the solid-liquid phase boundary
for a classical, two-dimensional sheet of electrons.
The data points denote the melting temperatures meas-
ured at various values of the electron areal density, N~.
Along the line, the quantity I', which is a measure of
the ratio of potential energy to kinetic energy per elec-
tron, is 187.
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where q=1.057 is the dielectric constant of liquid He.
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pacitance between the guard ring and the top plate as
the cell is filled. Because of capillary action and the
meniscus, the uncertainty in d is =+10'gyp.
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We analyze the vibrational modes of a two-dimensional electron solid, coupled to the rip-
plon modes of a liquid-helium surface, as a function of temperature and extern~3 electric
pressing field. Resonsnoe observed experimentally by Grimes and Adams are thereby ex-
plained.

It has been expected for some time that elec-
trons trapped just above a liquid-helium surface
would form a triangular two-dimensional (2D)
solid, at sufficiently low temperatures and high
densities. '~ Experimental demonstration of a
phase transition in the trapped-electron system
has been obtained by Grimes and Adams' as de-
scribed in the preceding Letter (hereafter re-
ferred to as GA). In the present Letter, we ana-
lyze the long-wavelength vibrational modes of
the electron solid (phonons), taking into account
their coupling with ripplons (excitations of the
helium surface). The resonances seen in GA are
interpreted as arising from the low-lying longi-
tudinal modes, at the discrete vectors t|; deter-
mined by the geometry.

The vibrational frequency spectrum of the 2D
electron solid, in the absence of coupling to rip-
plons, has been given by several authors. ' The
transverse phonon branch has a linear frequency
spectrum at long wavelengths, w, (q) = c,q (c,
=0.245e'~, 'I'/~ at T =0). Here e, m, and n, are,
respectively, the charge, mass, and areal num-

ber density of the electrons. Because of the long-
range I/y potential, the longitudinal-mode spec-
trum of the ideal electron crystal has the form of
a 2D plasmon, 4 v, = (2mne'q/m)"'. This spectrum
is indicated by the dashed curve in Fig. 1.

The spectrum of ripplons on an unperturbed
helium surface, ignoring gravity, is given by
Q'(K) =aK'/p, where e and p are the surface
tension and density of the helium. The ripplons
of interest have wave vectors, K=6„+Q;, where
G„ is a reciprocal-lattice vector of the electron
solid. For the triangular lattice, the magnitudes
are given by G„'=nG,' (n = l, 3, 4, 7, 9, ~ ..), where,
neglecting possible vacancies and interstitials,
G,'=Bw n, /3'~'. Since q;«G„, we may, in fact,
consider 0 tp be independent of q. The lowest
three ripplon frequencies Q„=Q(G„) are indicated
by horizontal dashed lines in Fig. 1.

Consider a set of electrons at specified coordi-
nates r(l) =R(l)+ u(l) parallel to the surface,
where 5(l) is the horizontal displacement from
the lattice position R(l). There will be a change
in energy due to interaction with ripplons, which
we may write as'

798 1979 The American Physical Society


