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Simulation of Tunneling States in Random-Network Glasses

D. A. Smith
I'hysics department, Monash University, Clayton, Victoria M68, Australia

(Received 30 August 1978)

Fully automatic computer simulation of random-network structures in amorphous Si
and Qe has been achieved using a generalization of Keating's potential. The local poten-
tial for one-atom displacements shows many multiple minima with broad distributions of
the energy difference and tunneling matrix element. These distributions lead to reason-
able estimates for the specific heat, which behaves as T lnT. One-atom tunnelirg states
appear to be appropriate for amorphous Si/Ge.

The nature of tunneling states in the widely ac-
cepted tunneling model of Anderson, Halperin,
and Varma' and Phillips' for amorphous solids
is still unclear, despite the accumulation of ex-
perimental findings in its favor. ' However, it is
clear from specific heat measurements that tun-
neling states are a universal feature of amorphous
solids or glasses. In a computer search for tun-
neling states, the simplest solid to model is prob-
ably amorphous Si/Ge rather than the glass sys-
tems studied so far, since it is monatomic and
the coordination (fourfold) is fixed. That the
structure is a random network is not in doubt. '
Glass formers tend to be covalent bonded with
open structures in the glassy and crysta11ine
phases, and so for amorphous Si/Ge we regard
covalent bonding as the essential property leading
to amorphicity and tunneling states.

To date the best models of glassy random net-
works have been ball-and- spring constructions
subsequently relaxed by computer" using Keat-
ing's essentially quadratic potential. ' These phys-
ical models can be eliminated by working with an
interatomic potential for covalent bonds. I used a
large-amplitude generalization of Keating's poten-
tial,

where primes delete equal indices from the sums.
The essential features are a hard core and attrac-
tive tail in f(r), and a triplet term which is mini-
mized when two bonds from one atom are at the
tetrahedral angle. Taking as unit length the equi-
librium bond length d, (2.35 A for Si and 2.44 for
Ge), f(x) has minimum value -1 at x =1 and g(1)
=1. Otherwise, the functions were chosen for
ease of computation, viz. , f(r) =15(0.4r ' —1)(1
—2x/3)2 and g(r) =9(1-2r/3)' with smooth cutoff s
at x, =1.5. A larger cutoff is desirable but not
practical as computing time goes as r,.' The ra-

tio B/A was 1.5, which for potential (1) corre-
sponds to P /n = 0.26 in the Keating potential 5' '
More realistic potentials are not available, but
(1}is adequate for our semiquantitative purposes.

To demonstrate that (1) leads directly to accept-
able random-network structures, V was mini-
mized for a sample of 250 atoms by the T =0 ver-
sion of a standard Monte Carlo algorithm. The
atoms lie within a cube of the appropriate density
(0.65) and periodic boundary conditions across
cube faces only eliminate most surface effects.
Computing time for one Monte Carlo step (MCS)
per atom is large because of the triplet term; it
is essential to tabulate first and second neigh-
bors of the atom moved, and with r, =1.5 there
are V5 entries on average. The initial configura-
tion of atoms was entirely random.

The results are as follows. After 65 MCS/
atom, the distributions of radial separation and
bond angles (Fig. 1) have converged to the accu-
racy of the simulation, and agree broadly with
those of Steinhardt, Allen, and Weaire' and Duffy,
Boudreaux, and Polk. ' But there are minor dif-
ferences. My structures are less "perfect" than
the relaxed ball-and-spring models; e.g. , in the
radial distribution there is no clear separation
into first and second neighbor shells, and the
bond-angle distribution, while of the same half-
width, has a larger standard deviation (19')~ lt
seems plausible that these differences are due to
restrictions on bond distortions built into the ball-
and-spring models (e.g. , no bond lengths greater
than 1.3 were allowed). Note that the topology of
these models is controlled by arbitrary, and
somewhat subjective, rules of thumb used in add-
ing atoms to the structure, and is not changed by
subsequent relaxation. Here the concept of bond
is not defined a Priori, and the topology is deter-
mined by the energy-minimizing procedure.
Counting squares in Fig. 1 shows that fourfold
coordination of "bonds" is achieved if the maxi-
mum bond length is 1.29, in remarkable agree-
ment with the model-builder's rules. Ring counts
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FIG. 1. Radial distribution function and (inset) bond-
~~le distribution for the relaxed 250-atom model. FIG. 2. Density of two-level states per atom, in

units where A. = l. e is positive if the secondary mini-
mum is higher than the original.

were also made, but these appeared to be influ-
enced by boundary conditions and were not char-
acteristic of R bulk structure.

The Monte Carlo method gives each atom in
turn a small random displacement which is al-
lowed if the energy drops, whether or not a barri-
er separates initial and final states. Barriers
certainly exist here; so the simulation will not
converge to a single metastable state. Conver-
gence of the total energy is slower than for Heis-
enberg spin-glass simulations'; the final energy
in units of one bond (A =1) was Z = —389 with a
variation of -0.2 per MCS/atom. This incom-
plete convergence in energy is tentatively inter-
preted as a slow switching between metastable
states, since all atoms are substantially at the
minima of their local potentials and all calculated
distributions have converged. The rate of switch-
ing would be reduced by decreasing the maximum
step length of each Monte Carlo move. The pres-
ence of a continuous distribution of one-atom en-
ergy barriers suggests that the switching rate
cannot be reduced to zero for any finite maximum
step length. Practically, very small values are
undesirable since there is an optimum maximum
step length which maximizes the chance of an al-
lowed move. This optimum value decreases as
the simulation proceeds and was of the order of
0.01 at the finish. If this switching hypothesis is
correct, the energies of metastable states are
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likely to be spread widely, although the existence
of a heat of devitrification would prevent them
from extending down to the crystalline value F.
= —500 for the diamond structure.

A search for one-atom tunneling states was
then made by exploring the local potential surface
of each atom in turn, the rest of the solid being
held fixed. This was carried out by a steepest-
descent search from all (100) and (111)direc-
tions on a sphere of radius 1.0 centered on the
initial equilibrium position. This procedure lo-
cated 4.05 additional energy minima per atom.
The density per atom of the energy difference be-
tween new and initial minima is shown in Fig. 2.
It peaks at very high c values, viz. , about 10
bond energies (10 eV for Si). Most of these
states are globally unstable since the cohesive
energy is i.98 units per atom. In fact this dis-
tribution is not realized by tunneling atoms since
the surrounding structure relaxes during tunnel-
ing. A systematic computer study is out of the
question, but only low-~ states are accessible by
phonon-assisted tunneling and these are hardly
affected by relaxation if the initial state is well
bound. This was checked by moving one such at-
om to a new minimum with e = —0.57, X/C [vide
(3)] =0.02 and relaxing the structure for 7 MCS/
atom with a maximum step length of 0.005. Near-
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ly all barriers remained intact, with & values
changing typically by 5%. However, the same
treatment for an atom moved over a large barri-
er with & =14 produced a completely different set
of barriers. These results contrast with a calcu-
lation of Klein et M. ' who assume all two-level
systems are equally affected by strain relaxa-
tlono

Tunneling to states with higher e values is the
key which "unlocks" the structure. The normal
evolution of the 250-atom system with step length
0.005, which is small enough to avoid jumping
through barriers, preserved nearly all barriers
over 7 MCS/atom. At higher temperatures, tun-
neling is presumably replaced by thermally acti-
vated processes, which may give rise to soften-
ing in glasses.

The identification of tunneling states is strength-
ened by showing that there are enough of them to
give the correct order of magnitude for the tun-
neling specific heat C,. The standard Anderson-
Halperin-Varma-Phillips results are"

C, = ~ ~'Xu, 'TX(0)P(0)&

where N(e) is the one-sided density per atom of
two-level states in the energy difference &, P(&)
is the distribution of the extinction coefficient A,

in the tail of the wave function, and X = a ln~t
where X' exp(- 2A.) is the transition rate between
wells. At 1'K, ~ is estimated as 5~10"Hz for
Si and 2.4X10"for Ge from a formula given by
Black.' Thus for a measurement time t =10 sec,

A.~=13 for Si and Ge. It has been assumed that
& and X are uncorrelated, as suggested by Fig. 3.

The simulation on 250 atoms is too small to re-
veal any states rvhich would contribute to the spe-
cific heat, i.e., with ~e(&ksT and tunneling times
less than t (or &&A. ). Hence our distributions
(Figs. 2 and 4) must be extrapolated back to zero
arguments. There is no reason why they shouM
not be continuous on a finer scale, since bond
lengths and bond angles are continuously distribu-
ted. A. values were calculated with the WEB ap-
proximation, which gives

x =cJ&,&[v(r) -z]"'di,
C = (2MA/h')"'d, . (3)

I estimate t-" =280 for Si and 430 for Ge. Figure
4 then verifies that P(X) is flat out to X,. which
was assumed in (2). Note that the fraction of
atoms which tunnel within 10 sec is A, ~P(0)
=0.09 (Si), 0.05 (Ge).

Table I summarizes these estimates for amor-
phous Si and Ge. Values of A. were derived from
crystalline sound velocities by fitting the curva-
ture of the pair potential; larger values are ob-
tained if A is identified as a bond energy but this
could be rectified by choosing a more realistic
potential. Unfortunately, the specific heats have
not yet been measured, but these numbers are
comparable with values C,/T ™10 ergs/gK' re-
ported for fused silica and glasses. "

Finally, it should be. pointed out that the linear
specific heat law is not an exact consequence of
the tunneling model. Despite a claim to the con-
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FIG.3. Scatter diagram of a and A, /C values for two-
level states.

FIG. 4. Normalized distribution of reduced tunneling
factor ~/C.
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TABLE I. Specfic heat estimates.

A
(eV)

X(0)
(eV ~) Z(0)

C, /T
(ergs/g K2)

Si
Ge

0.97
0.88

0.15
0.18

0.007
0.006

5.8 (S.5)'
1.6 (0.9)'

~Revised estimates [see discussions in text concern-
ing Eqs. (4)-(6)].

trary, ' it is modified when one considers phonon
transitions between eigenstates of the tunneling
Hamiltonian rather than between states localized
in each well. & is then replaced by E =(6'+6')'~'
which is the difference bebveen the two energy
levels; here 4 =Re, exp(-A. ) with cu, -10"Hz.
The internal energy of these thermalized states
18

Ug =NJ N(6)ds J P(A. )dA.

Table I. It is obvious that this modification does
not affect the main conclusion of this paper, that
there are sufficient one™atom tunneling states to
give order of magnitude agreement with specific
heat experiments. However, a more careful treat-
ment of (4) may be the key to the puzzling lack of
time dependence in the pulsed specific heat meas-
urements of Goubau and Tait." For example, a
single value of the phonon coupling constant ~ has
been assumed for all two-level systems. At high
temperatures this is not critical, but when &
& k BT the main contribution comes from very
large values of I and so it is essential to allow a
distribution of coupling constants.

The author wishes to thank Dr. James Black of
the Brookhaven National Laboratory for a helpful
discussion.

On changing variables from (6,A) to (E,6) and
noting that the 4 integration runs from 4
=&~,exp(-&~) to min(E, S&u,), (4) in the low-
temperature limit k gT «I, becomes

where

B

This differs from the original result, in which I
is replaced by ~ . For long-time measurements

;„«kqT (e g , for. t.=0 sec and T =1'K, 4
-10 ' K for Si). In this limit one finds that the
leading term for the specific heat is not linear in
T but is of the form T lnT.

Revised estimates for the specific heat coeffi-
cient appear in parentheses in the last column of
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