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We propose a "competing barrier model" for nucleation of quantized vortices in small
chAnnels. The results are compared to experiments on decay of persistent currents,
critical velocities, onset temperatures, and the effective superfluid density at onset.

For a number of years experimentalists have
tried to use the Iordanskii-Langer-Fisher" (ILF)
theory of fluctuation dissipation for superQow in
an unbounded region (intrinsic nucleation) to fit
experiments in restricted geometries. Several
years ago, two of us (DR)' pointed out the neces-
sity of considering a permanent barrier b.E for
Qow in a restricted geometry which is present,
irrespective of any superf low. For a toroidal
channel of circular cross section with zero cir-
culation, DR point out that the probability of nu-
cleating to the wall a vortex of one sign is equal
to that for a vortex of opposite circulation. How-
ever, when there is a superf low present, the en-
ergy barriers for nucleation of the two types of
vortex are not the same: For a large superf low
the process associated with one type of vortex
will completely dominate the other, while for
slower flows the nucleation of both types of vor-
tex have to be considered. This is the "com-
peting-barrier model" of nucleation.

In this Letter we show that the competing-bar-
rier model will qualitatively explain experiments
on decay of persistent currents as reported, for
exa,mple, by Hallock and co-workers and Kojima
etaE. ' We confine ourselves to the broad issues
using a simplified one-dimensional nucleation
model, neglecting the geometrical differences
among various sorts of porous materials and thin
films.

The nucleation probability, I', per unit time

P =2f exp(-r E/hT) sinh(p, v, /hT). (2)

Equation (2) shows that the dimensionless quan-
tity V (=p, v, /kT)-, the ratio of ordered flow en-
ergy to Quctuation energy, is important.

Suppose the superQow takes place in a toroidal
geometry containing n candidates per unit length
for nucleation; then (cf. Ref. 3)

dv, /dt = nP~, - (3)
where u = h/m. Equation (3) can be written non-
dimensionally as

d V/d7 = —sinhV (4)

by introducing the dimensionless time v = v,t and
the nucleation rate v, :

v, =vexp(-hE/kT), v=2nwfP, /hT.

Equation (4) has the solution

V=ln[(1+e "tanhV/2)/(1 —e "tanhV/2)], (6)

can be written

P =f exp(-aI'/hT),

where f is the temperature-dependent attempt
frequency discussed and tabulated by DR and hF
is the barrier height. For the ILF model, 4E is
due to the superQow alone. Here, 4E = 4E when
the superQow v, = 0 and the critical momentum is
then p, . With a flow, the pv, interaction shifts
the barrier and (considering only one dimension)
we have b,F=b,E + p, v, so that (1) becomes
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where V, is the value of Pat ~=0. The character
of (6) depends on the ranges of V, and 7.

For infinitesmal superQows, such as in "Nth
sound" (N = 2, 3,4), V, - 0 and (6) gives for all r

25

20

V-=In[(1+—'Ve ')/(1- —,'Ve"')]=-Ve '. (7) 15

Thus all small superQows decay exponentially.
For V, -~ and V-~simultaneously, e ~=exp

(- V,)+~/2 so that

10

V=- V, (small 7),
V=- ln(2/~) (large r),

and the dividing case occurs at v~ obtained by
equating the two estimates in (8):

v~ = 2 exp(- V,).

For fixed r (& 0), V is independent of V, in the
limit V, -~:

V=ln((1+ e ')/(1- e ')j= lncoth( —,'r),
so that

(8a)

(8b) 0
-10 4

log T

0

&&G. j.. Plot of Eq. (6) assuming kT/p =4 and various
values of the initial dimensionless velocity I/'0. The di-
mensionless time showing the beginning of exponential
decay 7& is common to all curves. 7z is shown for Qp
=15. Initial flows greater than 15 have the same velo-
city near logs = —6; initial flows less than 15 are
"steady" for increasing periods as V'p decreases.

V=-ln(2/7 ) (small 7),

V=-2e ' (large v),

(loa)

(10b)

and the dividing case occurs at ~~ obtained by
equating the two estimates in (10):

TQ ~ 1~

The dimensionless times ~~ and v~ are fundamen-
tal to our discussion: r~ is universal and sets
the lifetime of all superflows, while 7~ depends
on V,. The flow observed depends on the magni-
tude of v. For 7 «w~ the Qow is almost steady;
for v~«v «v.~ the Qow shows logarithmic be-
havior; for v»7.~ the flow decays exponentially.
The number of decades of logarithmic behavior
is given by log(~s/r~) = 0.43V, —0.37-.

Figure 1 shows several examples of (6), the
time evolution of finite superflows. In particular,
the flow for V, =15 has log7~=-6. 2. Larger
initial flows are independent of V, at log'T 6 2,
and and experimenter observing at this 7 would
term V, =15 the "saturated critical velocity. "
Hence, the condition at time ~ for a saturated
critical velocity'is given by 7 = v.~ and thus the
notion of a saturated critical velocity depends
crucially on the time of observation.

An experimenter using Nth sound as a probe
for evidence of superfluidity would observe noth-
ing for times larger than v~. Thus the condition
for "onset of superfluidity" is given by v = a~.

In order to make numerical calculations, we
need estimates of b.E, n, and f. Imagine a chan-

nel containing packed powder with a mean open
dimension d. A vortex stretched between two
grains will have an energy E„=(p, z'd/4m) ln(d/a),
where a is the vortex core parameter. When the
line is moved into a semicircle, it will just touch
the next grain, and then its energy is E, = (p p'd/
4) in(d/a). The "barrier" is given by hE = E,-E„
and p, =—,p, Ipnd 2 To or. der one, we adopt for
simplicity

aE = (p, ~'d/4z) In(d/a),

P =P Kd

(12a)

(12b)

In the same spirit, since the preexponential fac-
tors are not important, we assume that n cor-
responds to one trapped vortex betwen each pair
of grains, n =1/d, while a constant value f=10'
sec ' will suffice. For films we imagine the sub-
strate contains a distribution of trapped vortex
lines pinned between protuberances on the sub-
strate. When a trapped line of length of order d
moves into semicircle, it will just touch the free
surface, forming a vortex of energy E, as before.
Thus the estimates of hE, f, and n may be re-
tained for simplicity.

When a saturated current decays according to
(8b), the slope of the decay is dV/d ln7 = -1, or

dv, /d(log t) = —kTIn(10)/P, .

Kojima et al. ' observed a decay of 0.63/p per
decade of a saturated persistent current with t,
=67.7 cm/sec at t=1 sec, T=1.3 K, and d= 170-
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FIG. 2. Saturated velocities obtained from Eq. (14)
at t =100 sec for various channel sizes. Flows near on-
set will show decay as Vp 1 (indicated by dashed lines).

FIG. 8. Onset temperatures Tp obtained from various
channel sizes. Data from many sources.

&,' =&E/P, —(kT/P, ) ln(vt/2). (14)

The first term bE/P, = (z/4md) ln(d/a) does not
contain temperature explicitly and is a Feynman
critical velocity. By itself, it is appropriate
only at very low temperatures, since the second
term substracts from it, reducing the observed
critical velocity. The results shown in Fig. 2

are in order-unity agreement with published re-
sults. They show the critical velocity approach-
ing zero near the onset temperature T, &T&, to
be discussed next.

The condition for the onset of superfiuidity
is &=v.~. If we express our observation time in
terms of frequency y=t ', this condition by (5)
18 Vo =+7'g 01

[in(d/a)/in(v/p v~)] (p,d/T, ) = 4m'/K', (15)

which must be solved by iteration since v and a

325 A. Thus de, /d(logt) = —6.3X10 '&&67.7 or,
by (13), kT/P, = 0.185. For d = 250 A we find, us-
ing (12b), that kT/P, = 0.208 in good agreement
with observation.

The condition that an initial velocity leads to a
saturated flow is v = r~, or V, =in(2/r). Defining

v,' as the initial velocity corresporiding to V„
we find from (5) that r =a~ becomes

are themselves temperature dependent. %e show

in Fig. 3 the results of T, as a function of d com-
pared with the results of many experiments, tak-
ing typical values of y= 10'-10~ Hz. The general
agreement is quite satisfactory —below about 0.6
K our results are questionable since the corre-
sponding films are very thin. 7', increases weakly
with q.

Recently Nelson and Kosterlitz' showed that
for two-dimensional superfluids the ratio of su-
perQuid mass per unit area near the transition
temperature T, is given by the exact result,

p, (T, )/T, = 8wk/~'.

Bishop and Reppy and Rudnick' have shown that
(16) gives a good account of their experiments
over a wide range of temperatures and thickness-
es identifying p, (T, ) with p, d. We can write (15)
in the form (16) by adopting an effective super-
fluid density at onset:

p, = p,(2 in(d/a)/ln(v/y~~)) .
We illustrate the behavior of p, in Pig. 4: It has
the usual property of vanishing at T = 0 and T = T„.
For comparison one can show data quoted by
Rudnick derived from third-sound measurements
on thin films' and by Bishop and Reppy from mea-'

surements of p, (T, ).' Values of p, were deduced
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Evidence supporting the decay shape shown in
Fig. 1 and the dependence of v, and d and T will
be presented elsewhere by D. Ekholm and R. B.
Hallock, to whom we are indebted for experi-
mental cooperation during the development of
this theory. We are also grateful to J. Reppy
and I. Rudnick for discussions of their experi-
ments, and to B. Huberman, S. Doniach, E. Sig-
gia, and V. Ambegaokar for the discussions of
their theories.

This research was supported by National Sci-
ence Foundation Grants No. NSF ENG 76-07354
and No. DMR 76-07354 and U. S. Air Force Of-
fice of Scientific Research Grant No. 76-2880.

FIG. 4. The effective superfluid density at onset p,
calculated from Eq. (17) and compared with experiments
of Budnick (Ref. 9) and Bishop and Reppy (Ref. 8).

assuming the relationship between onset thick-
ness d in atomic layers and T, is given by T, = P(d
—n) with P = 1.5 K per layer and ot = 1.4 layers
for To& 1 K.

The works of Nelson and Kosterlitz, ' Huberman,
Myerson, and Doniach, "Ambegaokar, Halperin,
Nelson, and Siggia, "and Myerson" address the
problem of two-dimensional superQuidity with
emphasis on the behavior near the transition.
Reference 10 discusses a two-dimensional de-
pairing model and Refs. 10 and 12 give a decay
form which fits some of the film data quite well. 4

Reference 11 discusses a vortex depairing and
recombination model and provides a detailed dis-
cussion of the experiments of Bishop and Reppy. '
The present theory assumes three dimensions
and requires a permanent barrier AE. It attempts
to include behavior far from critical. Films so
thin that the nucleation mechanism discussed
above could not operate would have to be treated
differently: In particular, the thickness of the
film must be considerably greater than the heal-
ing length in the present model. We shall address
these concerns more fully in a forthcoming ar-
ticle.

~'~ Permanent address: School of Mathematics, Uni-
versity of Newcastle upon Tyne, Newcastle upon Tyne,
United Kingdom.

S. V. Iordanskh, Zh. Eksp. Teor. Fiz. 48, 708 (1965)
[Sov. Phys. JETP 21, 467 (1965)],

J.S. Langer and J. D. Reppy, in Progress in Lose
Temperature Physics, edited by C. J. Gorter (North-
Holland, Amsterdam, 1970), Vol. VI, Chap. I.

3R. J. Donnelly and P. H. Roberts, Philos. Trans.
Boy. Soc. A271, 41 (1970).

K. L. Telschow and B.B. Hallock, Phys. Bev. Lett,
87, 1484 (1976); D. Ekholm and B.B. Hallock, J. Phys.
(Paris), Colloq. BB, C6-806 (1978); R. B. Hallock,
Bull. Am. Phys. Soc. 28, 536 (1978).

~H. Kojima, W. Veith, E. Guyon, and I. Budnick, in
Lose Temperature Physics, I.T-13' (Plenum, New York,
1974), Vol. 1, p, 279.

R. P. Feynman, Progress in Lose TemPeratuxe Phys-
ics, edited by C. J. Gorter (North-Holland, Amsterdam,
1964), Vol, 1, p. 1.

D. R. Nelson and J. M. Kosterlitz, Phys. Bev. Lett.
89, 1201 (1977).

D. J. Bishop and J. D. Reppy, Phys. Bev. Lett. 40,
1727 (1978).

I. Rudnick, Phys. Rev. Lett. 40, 1454 (1978).
~ B. A. Huberman, R. J. Myerson, and S. Doniach,

Phys. Rev. Lett. 40, 780 (1978).
~~V. A~'begaokar, B. I. Halperin, D. B. Nelson, and

E. D. Siggia, Phys. Bev. Lett. 40, 788 (1978).
B.J. Myerson, Phys. Rev. B 18, 8204 (1978).

728


