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If scattering amplitudes are ordinary complex numbers (not quaternions) then there is
a universal algebraic relationship between the six coherent cross sections of any three
scatterers (taken singly and pairwise). A violation of this relationship would indicate
either that scattering amplitudes are quaternions, or that the superposition principle
fails. Some experimental tests are proposed, involving neutron diffraction by crystals
made of three different isotopes, neutron interferometry, and X&-meson regeneration.

Quantum theory rests on the superposition prin-
ciple' which asserts that the states of a physical
system can be represented as the elements of a
linear manifold. That is, if g, and P, are two
possible states of a system and c, and c2 are ar-
bitrary numbers, then c,(,+c,g, is also a pos-
sible state of that system. It is usually taken for
granted that the coefficients c, and c, are com-
plex numbers. However, it is possible to imag-
ine a real quantum theory' or one based on qua-
ternions. ' ' In this article, I show how it is pos-
sible to distinguish experimentally between real,
complex, and quaternion quantum theories.

Real quantum theory, although logically con-
sistent, can be easily ruled out for our world'.
e.g. , complex coefficients are needed in order
to combine linearly polarized photons into cir-
cularly polarized ones. ' More generally, cor-
respondence with classical physics leads to the
commutation relations [p,q] =i@. A formal test,
which will later be extended to distinguish be-
tween complex and quaternion quantum theories,
is the following.

Consider a beam of particles impinging on a
scatterer. Let g, represent the state of the scat-
tered particles, i.e., g, is the difference between
the actual state g and the state (, which we would
have if the scatterer were absent. Assume that

g, is normalized to unit flux. Now, set a detector
at a distance R from the scatterer and let y/R
represent the state for a unit Qux of particles
passing through that detector. Then the cross
section for scattering into our detector is defined
as

where (X, g,) denotes the scalar product of the
states y and P, . If this scalar product is a com-
plex number, we can write

(X, g, ) =a, exp(iq, ),

so that

Similar formulas hold for quaternion quantum
theory, with exp(iy, ) replaced by unimodular
quaternion.

Consider now a different scatterer, with scat-
tering amplitude

(X, q, ) =a, exp(~, ).
We have likewise

202=a2 .
Finally, if both scatterers are present, we have
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to a good approximation

(x, 0») = (x, 0,)+ (x, 4.).
This relation is valid if double scattering can be
neglected. The total cross section thus is

o„=~a, exp(iy, )+a, exp(tp, )~'

= o, + o, + 2(o,o,)'I' cos(y, —p, ).
Note that a» as well defined provided that the
relative position of the scatterers is held fixed
(coherent scattering).

Define

y = (o» —o, —o,)/2(o, o,)'I'

This quantity involves only cross sections and
can therefore be measured for any pair of scat-
terers. By virtue of the preceding equation, the
measurement of y gives a simple criterion to
distinguish between real and complex quantum
theories:

If y=+1, real quantum theory is admissible.
If 1 y) &1, sve may have complex (or quaternion)
quantum theory. And if I y I &1, the superposition
principle is violated

At this point, the reader should be warned that
the above formulas, which have been derived for
pure states, may not be valid for mixtures such
as an unpolarized beam, if the cross sections
are spin or polarization dependent. For such a
mixture, we have averages

( ) =( &+(,&+2(, , cos(y, —0,)&.

In that case

is not the cosine of a phase difference, and the
formulas derived in this paper are not valid.
(They do remain valid if the cross sections are
not affected by the spin or polarization variables. )

We now consider a third scatterer and define,
as previously, O„a„, and o23 and

ot = (o„—o, —o,)/2(o, o,)'I',

and

In complex quantum theory, o., P, and y are the
cosines of (y, —y, ), (p, —p,), and (y, —p, ) and
therefore are not independent, since these angles
sum up to zero. An elementary calculation gives

On the other hand, if the amplitudes (X, („)are
quaternions, their sums do not behave as vectors
in a plane but as vectors in a four-dimensional
space. We then have 0&E(o.,p, y)&l. The cri-
terion to distinguish between complex and qua-
ternion quantum theory thus is as follows:

If F(n, p, y) =1, complex quantum theory is ad
missible. If F& 1, me may have quaternion quan
turn theory. And if F&1, the superposition prin
ciple is violated. "'"

It should now be clear that quaternion quantum
theory is essentially different from complex
quantum theory. It is not equivalent to having
some additional "internal" degree of freedom.
Let us devise an experiment to distinguish be-
tween the two.

As explained above, the scatterers must act
coherently and multiple scattering should be
negligible. This rules out some tantalizing ideas,
like scattering neutrinos from the three different
quarks in baryons.

Apparently, the simplest test is Bragg scatter-
ing by crystals made of three different kinds of
atoms. Indeed, this test was performed long ago
with x rays: The fact that phase angles are co-
planar" is the basis of the multiple isomorphous
replacement method, used to resolve the struc-
ture of proteins. " However, x-ray diffraction
involves only the interaction of photons and elec-
trons, and we should not expect to observe there
significant deviations from standard quantum
theory.

On the other hand, nuclear forces are not as
well understood as quantum electrodynamics. It
thus appears that a nontrivial test could be neu-
tron diffraction by crystals made of three dif-
ferent isotopes. The latter should have large
neutron capture cross sections, for the following
reason.

The scattering amplitude can be written as'4

f= [q sin25+ i(l —g cos25)] /2h,

where k is the wave number, 5 is the S-wave
phase shift (the other partial waves are com-
pletely negligible for thermal neutrons), and g
is the elasticity parameter. Both 5 and I —rt are
very small, as can be seen from the scattering
and absorption cross sections

4n . 1-q 2
o = —csin'5+

k 2
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and

a = —(1-q').

For thermal neutrons, 4n/k'=10'b, i.e., 5=10 ~.

We thus have approximately f =[tl+t(1-rt)/2]/k,
the phase of which will be nontrivial provided
that (1-il)/2 has at least the same order of mag-
nitude as 6. This implies that 0, should be of the
order of 104b or more, for at least two of the
scatterers. Usually o, is much smaller, and f
almost real. If this happens for scatterers 1 and

2, say, then o. =p and y = 1, so that E (o, , p, y) = 1
trivially. Thus, most such experiments cannot
distinguish between complex and quaternion quan-
tum theories.

There are, however, several stable nuclides
with capture cross sections of the required mag-
nitude. The two largest ones are «Gd"' and

,4Gd'", but Gd is ferromagnetic and this might
complicate the data analysis. Next, we have
„Sm'4' (41000 b, I= -', ) and ~,Cd"' (20000 b, I=-')
or, if even-even nuclei are preferred in order to
avoid the incoherent background due to nuclear
spin, "one could use «Dy"' (3700 b) and»Yb'"
(3200 b), The third isotope need not have a large
capture cross section, i.e. , its f may be almost
real, since only relative phases are important.

Instead of Bragg scattering, another possibility
could be neutron interferometry. " As the latter
involves only the forward-scattering amplitude,
this test would have less generality than the one
discussed above, but it might be easier to per-
form. Consider a plane wave e' '. Passage
through a thin plate changes the amplitude into
Te' e' '. The transmission coefficient T is
due to absorption in the plate and reflections at
its surfaces. The phase shiftA is due to the dif-
ference in optical path. By means of interference
with a reference beam e' ', with k'=k, it is
possible to measure both T and h. Now consider
two plates made of different materials, taken
singly and jointly. The total transmission co-
efficient T» will not, in general, be T,T, because
of multiple reflections between the plates. But
the total phase shift +y2 should be +y++g if our
use of complex numbers is legitimate.

On. the other hand, quaternion interference will
usually give 4„&4, +h„because quaternion rota-
tions do not commute. To test this with the
strongly absorbing materials mentioned above,
very thin lamellae (a few microns) should be
used, yet they should not be so thin as to make
the 6 too small.

Still another possible test could be comparing
K~-meson regeneration" by three different ma-
terials, taken singly" and pairwise. Here, the
observed quantity is the square of the forward
regeneration amplitude. For our purpose, it is
similar to a cross section and the expression
E(ot, P, y) can be defined exactly as before. For
this test, it would be especially interesting to
combine neutron-rich and proton-rich nuclei.

In summary, I have provided a simple quanti-
tative distinction between real, complex, and

quaternion quantum theories, based on exper-
imental tests of a universal nature, independent
of our knowledg" or ignoranc" of the dynam-
ical laws.

I am grateful to G. Gilat, J. Goldberg, and

S. Lipson for helpful comments.
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