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Bulk Si valence charge densities calculated in a completely parallel manner for a traditional
weak pseudopotential, a pseudopotential with a strongly repulsive core, and the full potential
are compared. The second and third are in excellent agreement, while the first displays a
somewhat modified bond-charge shape.

Pseudopotentials have been used extensively in
calculating the energy bands" and valence charge
densities" of semiconductors. While earlier
work primarily used an empirical pseudopoten-
tial consisting of a few Fourier components, re-
cent work has introduced model potentials for
the bare ions and screened them self-consistent-
ly with the valence charge. " Results differ
little. In both cases, these "soft-core" pseudo-
potentials are weak and smooth, and a plane-
wave expansion for the wave functions converges
rapidly.

A rather different group of "hard-core" pseudo-
potentials has recently been introduced. These
have been derived from atomic calculations' "
and hydrogenic ion levels. " They are strongly
repulsive in the core region, so that valence
wave functions, although nodeless, must decay
strongly and thus have a slowly convergent plane-
wave expansion. Such pseudopotentials have been
used in molecular calculations, '"where they
accurately reproduce the results of parallel full
potential or "all electron" calculations, and to
derive radii used in empirically separating crys-
tal structures" and fitting alloy heats of forma-
tion. "

In this Letter, the results of completely paral-
el self-consistent calculations using soft-core,

hard-core, and full potentials are compare-d for
the prototype covalent semiconductor Si. The
charge densities predicted by the hard-core and
full potentials are in excellent agreement; the
soft-core charge density displays the correct
contour topology and integrated bond charge, but
a slightly distorted bond-charge shape. The en-
ergy bands given by all three potentials generally
agree. The present results contradict the con-
clusions of Miller et al."that soft-core poten-
tials lead to topologically incorrect charge densi-
ties and eigenvalues with significant errors.

To represent correctly the scattering proper-
ties of the full potential, different angular-mo-
mentum components of a valence wave function
should feel different pseudopotentials in the core
region. Such / -dependent "nonlocality" has been
used to improve the energy-band fit of empirical
pseudopotentials, and the small added terms do
not change the soft-core character. 4 The hard-
core pseudopotentials, as derived, are l nonlocal.
However, for Si, the s and p pseudopotentials
are very similar, ' and the d potential is fairly
well shielded by the centrifugal barrier in the
core region. To keep the comparison simple,
local forms of the Si"potential have been used.
The soft-core form of Schluter et al. was used, '
which is specified in reciprocal space as

16' cos(0.79lq) —0.352
V q = — —, ' '

p —0.018@',
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where V and q are in atomic units. Similar results would be obtained from the form in Ref. 5. The
local hard-core form used is that of Harris and Jones, "given in real space as

r(r) = —
(
—
) + 0.){exp[)4(098—r)] —)) 9(098 —r) . (2)
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FIG. 1. Si4+ ion potentials used in the present calcu-
lations.

These are plotted, along with the full potential of
the Si4' ion, in Fig. 1.

The results reported here were calculated
using a recently developed self-consistent ver-
sion of Andersen's linear augmented-plane-wave
(LAPW) method. " Wave functions are represent-
ed by plane waves in interstitial regions smooth-
ly jointed to a pair of numerical radial functions
for each E inside touching muffin-tin spheres.
The charge and potential are of completely gen-
eral form, and are represented by numerical
radial functions for each symmetry-allowed
angular-momentum component inside the muffin
tins, and plane waves in the interstitial region.
The signer interpolation formula" is used for
the exchange and correlation potential,

1/3 0.944+ 8 90n
V (B) B 0 984

(
"

y/3)p

with real-space synthesis of n followed by Fou-
rier and spherical-harmonic analysis of V~
The core charge (where used) is recalculated at
each iteration. Using approximately 50 plane

!waves and a 1 «4 expansion for the wave func-
tions, 440 plane waves and 1 ~8 for the charge
and potential, and two special points" for the
Brillouin-zone sample yields 0.1-eV overall con-
vergence, verified by increasing each of these
in turn. The same parameters are used for all
calculations, so that systematic errors peculiar
to the nature of the expansion are consistent
throughout.

Valence charge densities for the three poten-
tials are shown in Fig. 2. The full-potential and
hard-core-potential results superpose almost
perfectly everywhere except within 1 a.u. of the
atoms. The soft-core results differ in the bond
region and near the atoms. However, all three
agree in the empty regions, indicating that the
net integrated bond charge is correct for the soft
core.

A more quantitative comparison of the bond

region is given in Fig. 3. The full-potential and
hard-core-potential charge densities are ex-
tremely flat in the bond region, and fall quite
abruptly as the core is approached. The latter
is essentially zero in the core region. The soft-
core charge density is more nearly sinusoidal,
and has nonzero amplitude in the core, approxi-
mating what one would expect if the hard-core
charge density were convoluted with a smoothing
function.

Two modifications of the soft-core Si charge
density have been discussed. A nonlocal addition
to the pseudopotential modifies the bond-region
contours of Fig. 2(c) so that they are elongated
parallel to the bond, in better qualitative agree-
ment with Figs. 2(a) and 2(b).' However, this is
achieved by a further increase in the core-region
density, worsening the agreement in Fig. 3. Core
orthogonalization of soft-core wave functions for
the Si, molecule has recently been shown to im-
prove their resemblance to full-potential results. "
It is clear from Fig. 3 that applying the same
procedure in the solid will decrease the average
core-region density, but will do so at the ex-
pense of further enhancing the sharpness of the
peak around the bond center. Core orthogonaliza-
tion is an inappropriate modification with pseudo-
potentials that have been designed to give the
correct wave-function amP/itude outside the core.
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FIG. 3. Si valence charge densities along a bond.
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here (or that of Ref. 8).
A Si valence charge density synthesized from

x-ray data' is in good overall agreement with
the results shown in Figs. 1(a) and 1(b). The
peak density at the bond center of 0.102 a.u. is
somewhat larger than those in any of the calcu-
lations. This value, as well as quantitative de-
tails of the bond-charge shape may reflect sys-
tematic errors in the core subtraction or anoma-
lous dispersion correction of the data.

Band energies at l; X, and L symmetry points
are given in Table I. The full-potential and soft-
core-potential energies are in excellent agree-
ment with independent orthogonalized-plane-
wave" and plane-wave" calculations, respective-
ly. The empirical nonlocal results by Chelikow-
sky and Cohen in the last column are in excel1.ent

TABLE I. Band energies in eV at symmetry points
for the full, hard-core, and soft-core potentials from
the present self-consistent LAPW calculations, and for
an empirical nonlocal pseudopotential (from Ref. 4).

Potential
level Full Hard Soft Empirical
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FIG. 2. Contour plots of Si valence charge densities
in a.u. &&10 . Atom positions are indicated by dots.

A recent Si charge-density calculation by Zun-

ger and Cohen using a nonlocal hard-core pseudo-
potential shows a distinctly split, or two-peaked,
bond-charge density. " The discrepancy between
this and the present results appears to arise
from the fact that their Si4' pseudopotential has
a significantly smaller core radius (zero cross-
ing) than the Harris-Jones pseudopotential" used
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agreement with experiment, and will be used as
a standard for comparison. The full-potential
calculation gives the best valence-band energies.
Both the hard- and soft-core results place the
bottom valence bands low by 0.4-0.8 eV. The
upper valence and lower conduction bands agree
quite well among the full, hard-core, and soft-
core potentials. However, these conduction
bands are too low by 0.6-0.9 eV. The local-den-
sity-functional approach is a ground-state meth-
od, and there is no theoretical basis for assum-
ing that excited states should be given correctly.
The gaps can be improved, ,although not uniform-
ly, by modifying the exchange. " It is not clear
that this is a universally applicable "fix,"how-
ever, especially for more ionic materials. A
practical means of going from a ground-state cal-
culation to a reliable excitation potential remains
an open problem. The soft-core-potential pa-
rameters could certainly be adjusted to produce
better gaps, which gives this method a significant
advantage over all-electron or first-principles
pseudopotential calculations for spectral studies.
The close agreement of the charge in Fig. 2(c)
with that calculated from a local empirical pseu
dopotential' indicates that it would be insensitive
to such adjustments. The largest discrepancy
between the full-potential and hard-core-potential
results is the I'»' level, which contains only d
and higher-angular-momentum components, for
which the repulsive core is a poor approxima-
tion.

The general conclusions of this study are that
full, hard-core, and soft-core pseudopotentials
all produce reliable charge densities and energy
bands. Hard-core potentials are capable of more-
accurate bond-charge shapes, and hence are
more useful in sensitive structural separations.
However, the rapid convergence of soft-core
wave-function expansions, their subsequent use-
fulness in low-symmetry situations like surfaces
and defects, and the ability to produce a more
accurate excitation potential indicate the superior-'
ity of the soft-core approach for most applica-

tions.
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