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ln a sheared magnetic field, turbulent diffusion of electrons in the vicinity of a mode

rational surface can eliminate the stabilizing influence of nonresonant electrons and

lead to an absolute instability at small but nonzero wave amplitudes. As the turbulence

grows, the inverse electron Landau resonance is broadened in both velocity and configur-
ation space, and the convective shear damping due to ions is enhanced by turbulent spa-
tial broadening of the mode until saturation occurs.

The original work of Pearlstein and Berk' indi-
cated the existence of an absolute universal in-
stability of a confined plasma (&P00) in a sheared
magnetic field. Recently, numerical integration
of the exact differential equation describing the
radial structure of the drift-wave eigenmode
showed the absence of an absolute instability,
regardless of how weak the shear or how large
the poloidal wave number. " The stability of the
universal mode in these improved treatments is
due to the inclusion of nonresonant electrons in
the region about the mode rational surface where
k()(r) =[m-nq(r)]/Rq&&;/ve„. Here, m and n are
poloidal and toroidal mode numbers, respectively,
q(r) =rBr/RB~ is the safety factor, u& is the mode
fretluency, and v, q, = (2T, /m, )' ' is the electron
thermal speed. Physically, for (k Hv, q, /(a&)'& 1,
the local electron response is (linearly) nonadia-
batic and therefore does not support the drift-
wave oscillation imposed by the global mode.
Nonresonant damping results. Thus, instability
might be recovered by altering the electron re-
sponse in the region around the rational surface.

In this Letter it is shown that turbulent diffu-
sion of electrons across the rational surface,
due to a combination of shear (ek „/er -=k

~( w 0)
and random E X8 fluctuations and/or stochastic
magnetic perturbations, results in a finite-am-
plitude-induced version of the absolute universal
instability. Physically, the turbulent scattering
of electrons across the rational layer leads to
an effective finite value for k~~ which destroys
the stabilizing influence of the nonresonant elec-
trons. To estimate the level of turbulence re-
quired for the onset of nonlinear instability, we
note that in a wave period an electron will diffuse
radially a distance 4x = (D „„&u ')' ', where D„„is

the radial turbulent diffusion coefficient. There-
fore, (k ~~)' —=k ~(bx & v/v, q, implies the threshold
[D„„(k~(v, q,)'/3]' '=&a, & &u. Thus, a diffusion co-
efficient only somewhat larger than the classical
value D, -p, 'v,

&
is sufficient to destabilize the

universal mode, provided shear damping can be
overcome. For electrostatic turbulence, this re-
tluires n/n - 10 '. At larger amplitudes, the elec-
tron growth is reduced and the ion shear damping
is enhanced by spatial broadening of the mode,
yielding non1. inear stabilization.

The turbulent diffusion process in a sheared
magnetic field produces a resonance broadening
mechanism for the electrons which is fundamen-
tally different from the process, due to random
E~B drifts alone, in a shearless field."' With
shear, stochastic radial motion combines with
parallel electron streaming to induce random
poloidal motion. The decorrelation frequency
resulting from this random motion of electrons
in a sheared field can be estimated as follows.
In a correlation time w„electrons diffuse radial-
ly a distance L& = (D„„r,)' ' with a change &k~~

=kII'I-&. In the same time, they free stream
along the magnetic field a distance I-II=v~IT, . By
definition, the phase change in a correlation
time is one wavelength, L ~~&k,

~
=1, which yields

Comparing v', with the correlation time
T,o =(k„D„,) ' in a uniform field, note that

5 =&./&.,= [L,D„„(ks&r'vs„) ']"',
where L, =Rq'/(rq') and br ~ ks ' is the radial
mode width. For tokamaks, $«1, except near
the value of D„„required for saturation of short-
wavelength modes, where $ & 1. Thus, the shear
decorrelation gives the dominant nonlinear broad-
ening in a tokamak plasma.
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The electron distribution function for a turbulent plasma in a sheared magnetic field is written f,
=E, +f„where E, is the phase-averaged part of f, and f, is the fluctuating response. With E =- VC',
e =2m, v, and n=8/B, the fluctuating part of f, satisfies the nonlinear drift equation

7'4 xB 8

Sg
—+v~~n V — —+ ]e~v~~n VC' —f =(- lelv~~n. VC'+ice. )e)c')BE /86.B2 Sr ae 8 e

Here

cu., =—[in x VE,/()e~BBE,/8&)] V lnC'=ke(&E, /ar) (lelBBE,/ac) '

is the electron diamagnetic frequency and ke = m/r is the poloidal wave number. The effects of mag-
netic field fluctuations have been neglected here, although for P, &m, /m, they also scatter the electron
orbits. '

Inte~rating Eq. (1) along perturbed electron trajectories yields for the phase-coherent part~ of 1,
=P f,, (r)exp[-inst+i(m8 —ny)]

f." = —lel@V». /se i(~ —-~,)I~I(BE./&&)RV@'g, (2)

where 4 =+4y(r)exp[-icot +i(m8 -np)] and the resonance operator is' (in the cumulant approximation)

R k Ck =, exp[i v't' ——,'m'(~8') —&(k ~~'v~~) ((g br dt"))]G(~)dt'. (3)

Here, ce'=co-k~~ett and

(4)

The terms ~(58') and (br) have been previously computed for a uniform magnetic field." The new
broadening term ~ (k~~ v

~, ) represents an additional stochastic change in 8, due to nonlinear motion,
d58/dt ' = —(v ~~/Rq)(8 lnq/&r)br(t'), which gives the dominant broadening (~e,) in a sheared field.

The average displacements appearing in Eqs. (3) and (4) may be evaluated by substituting f, from
Eq. (2) into the quasilinear equation" for 7„yielding (58') = 2Dee t'/r' and (br) = 2D„„t'. Here, the
diffusion tensor for electrostatic turbulence is

D =(c/B) Qp(nxVL pnxVRpLk),

with I, =4 —(v~~/c)A „. Noting that (br(t, )br(t, )) =(br'(lt, —t,l)) = 2D„„lt,-t,l, Eq. (3) becomes

Rk ~;=f, dr exp)&'t' t'/t, e-—(t'/t, ) ]G(C'), (6)

where t,e '=ke'Dee is the shearless deeorrelation frequency, 4 and t, '= [kg v) D /3]~ s is the deeorre
lation frequency in a sheared magnetic field, which vanishes in the absence of wave-particle energy
transfer. As noted previously, for tokamaks $ = (&g,e) '& 1, and thus G (4 ) = 4 (r ) +D„„t'8'C /er', repre-
senting turbulent broadening of C' over a correlation length I, = (D„g,)' '. This contrasts with the shear-
less case where &r'/L, '$ '-1 and G(c') =4'(r) exp(- k„'D„„t') contributes to the resonant wave-particle
energy transfer.

Using Eq. (6) to calculate the electron density perturbation, assuming E, is a Mmowellian, and invok-
ing the linear ion response (for $ & 1) together with quasineutrality yields the eigenmode equation:

O'4 k/ex' —[A —p'x'+o(x)/x]4'p=O. (7)

In Eq. (7), x = (r —r,)/p„where p& = (T &m~)' '/eB is the ion Larmor radius, g(r, ) =m/n defines the lo-
cation r, of the rational surface, and A = [1+&(I—I',) —I',~, /~]d ' contains the basic drift-wave re-
sponse. Here, 7 =T,/T&, I'„=I„(b)exp(- b), and b = (kep&)'. The shear parameter is

p, =~ '(L„/L~)((ue, /(u)[I', (7 +a)e,/(u)d ']'i',

with I,„=-8inn/&r. The destabilizing electron contributions are contained in o(x) = Zo[( +xix, )/x],
where o, = (c /e. , —l)od ', x, = a+/+.„x,= n~gv. „a= (&em, /m&)"'L~/L„, and Z is the plasma dis-
persion function. A Lorentzian form for the resonance function was chosen for analytic and numerical
convenience, although the results given here are not sensitive to this approximation.

d = (I', —I',) (T + &u.,/&u) + 3i(1 —&u/cv. ,) (~.,/&u, )x,'
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equation was the dominant nonlinearity (with
adiabatic electrons).

The maximum diffusion coefficient obtained
from Eq. (9) occurs for b =5,= (1+7)'7"'h~~ ',
where the nonlinear and linear shear damping
become comparable. Here, &I,s =- (I-s/1.„)'(m, /m, )
is of order unity for tokamaks .The mode width~- (7'&»I-s/I-„)' '(1 +7) '& 1, which justifies
the use of the differential Eq. (7). The diffusion
coefficient which results from maximizing D„„
with respect to b is

D =15& ' '7' '[0 5(1+7)] ' 'p 'c,/I. „(10)
where ce =(T,/m, )' ' and ps'=7p&'. The associat-
ed electron thermal conduction coefficient is ~,
=2D„„. If E~B electrostatic turbulence is the
dominant scattering mechanism for these modes,
then Eqs. (5) and (10) indicate a density fluctua-
tion level at saturation, I/n =&~s(p, /I „) for 7 =1,
in the strong-turbulence limit &,~co'. The coef-
ficient in Eq. (10) is of the correct order of mag-
nitude to account for electron heat transport in
tokamaks outside the g =1 surface, with a fluctua-
tion level of several percent.

In conclusion, destabilization and saturation of
the drift mode in a sheared field have been shown
to result from a resonance broadening mechanism
that dominantly affects electrons. This contrasts
with previous turbulence theories in a shearless
field, ' where nonlinear ion damping led to satu-
ration and the electron dynamics were linear.
The present theory predicts saturation at modest
fluctuation levels.
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Measurements of the energy confinement time 7z in. the ISX-A (Impurity Study Experi-
ment) tokamak are interpreted theoretically using a one-dimensional time-dependent
transport code. The maximum Tz observed as the plasma density is varied over a wide
range occurs at that density above which anomalous electron thermal conductivity leads
to a smaller energy flux than neoclassical ion thermal conductivity.

One of the most striking features of recent ex-
periments in the ISX-A (Impurity Study Experi-
ment) tokamak' is the apparent saturation of the
energy confinement time v~ with increasing plas-
ma density as shown in Fig. 1. Effective impur-
ity control in the ISX-A, as in the earlier Alcator

experiments, ' permitted operation over a com-
paratively wide range of plasma density under
circumstances such that radiation was not a domi-
nant energy-loss mechanism in the interior of
the plasma. Since anomalous heat losses de-
crease with density, while neoclassical losses
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