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In a sheared magnetic field, turbulent diffusion of electrons in the vicinity of a mode
rational surface can eliminate the stabilizing influence of nonresonant electrons and
lead to an absolute instability at small but nonzero wave amplitudes. As the turbulence
grows, the inverse electron Landau resonance is broadened in both velocity and configur-
ation space, and the convective shear damping due to ions is enhanced by turbulent spa-
tial broadening of the mode until saturation occurs.

The original work of Pearlstein and Berk® indi-
cated the existence of an absolute universal in-
stability of a confined plasma (Vp #0) in a sheared
magnetic field. Recently, numerical integration
of the exact differential equation describing the
radial structure of the drift-wave eigenmode
showed the absence of an absolute instability,
regardless of how weak the shear or how large
the poloidal wave number.?*®* The stability of the
universal mode in these improved treatments is
due to the inclusion of nonresonant electrons in
the region about the mode rational surface where
k) =lm-nq()/Rqgsw/vy, Here, m and n are
poloidal and toroidal mode numbers, respectively,
q(r) =vB;/RB, is the safety factor, w is the mode
frequency, and vy, = (2T, /m,)"/? is the electron
thermal speed. Physically, for (2yvu./w)?<1,
the local electron response is (linearly) nonadia-
batic and therefore does not support the drift-
wave oscillation imposed by the global mode.
Nonresonant damping results. Thus, instability
might be recovered by altering the electron re-
sponse in the region around the rational surface.

In this Letter it is shown that turbulent diffu-
sion of electrons across the rational surface,
due to a combination of shear (8k,/87v=Fk #0)
and random EXB fluctuations and/or stochastic
magnetic perturbations, results in a finite-am-
plitude-induced version of the absolute universal
instability. Physically, the turbulent scattering
of electrons across the rational layer leads to
an effective finite value for 2, which destroys
the stabilizing influence of the nonresonant elec-
trons. To estimate the level of turbulence re-
quired for the onset of nonlinear instability, we
note that in a wave period an electron will diffuse
radially a distance Ax =(D,,w™)"?, where D,, is
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the radial turbulent diffusion coefficient. There-
fore, (k) f=k /Ax = w /v, implies the threshold
D, (e v mo)?/3]/*=w,2 w. Thus, a diffusion co-
efficient only somewhat larger than the classical
value D,~p,2y,; is sufficient to destabilize the
universal mode, provided shear damping can be
overcome. For electrostatic turbulence, this re-
quires 7i/n~10"%, At larger amplitudes, the elec-
tron growth is reduced and the ion shear damping
is enhanced by spatial broadening of the mode,
yielding nonlinear stabilization.

The turbulent diffusion process in a sheared
magnetic field produces a resonance broadening
mechanism for the electrons which is fundamen-
_t_all_x different from the process, due to random
EXB drifts alone, in a shearless field.*”> With
shear, stochastic radial motion combines with
parallel electron streaming to induce random
poloidal motion. The decorrelation frequency
resulting from this random motion of electrons
in a sheared field can be estimated as follows.

In a correlation time 7., electrons diffuse radial-
ly a distance L, =(D,,7,)"2 with a change Ak
=k/L,. In the same time, they free stream
along the magnetic field a distance L,=v;7,. By
definition, the phase change in a correlation

time is one wavelength, L Ak =1, which yields
T,=w.'. Comparing 7, with the correlation time
Teo = (k,°D,,)"" in a uniform field, note that

E=T,/Teo= [LSD,,(keA‘VSUme)-l]z/s’

where L ,=Rq?/(rq’) and Av 2 k™! is the radial
mode width. For tokamaks, £ <1, except near
the value of D,, required for saturation of short-
wavelength modes, where £ 1. Thus, the shear
decorrelation gives the dominant nonlinear broad-
ening in a tokamak plasma.
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The electron distribution function for a turbulent plasma in a sheared magnetic field is wr1tten Se
=F, + fe, where F, is the phase-averaged part of f, and fe is the fluctuating response. With E=- vé,
€ =3m ,v? ,andfi= B/B the fluctuating part of f, satisfies the nonlinear drift equation

d - vV®xB @
[3t FOM Y — o e+ lelvine vé— ]fe = (- leloyn- V@ +iwe,le| @)oF /o€, (1)
Here

ws, = [0 X VF,/(lel BoF ,/8€) ] V In@ =k (3F ,/o7) (le| BoF /2 €)1

is the electron diamagnetic frequency and k¢ = m/7 is the poloidal wave number. The effects of mag-
netic field fluctuations have been neglected here, although for 8,>m,/m, they also scatter the electron
orbits.®
Inte%ratmg Eq. (1) along perturbed electron trajectories yields for the phase-coherent part! of f
(r)expl - iwt +i(m 6 —nep)]

¥ = ~lel@poF, /ac—i(w - ws,)lel (0F,/0€)Rp 07, @)
where & =2, &y (r)expl—iwt +i(n0 —n@)] and the resonance operator is” (in the cumulant approximation)
® &
Rypdp= [ expliw't’ - 3m?(66%) = $(y'voy)X( [} 67 dt")D]G (&) dt". (3)
Here, w’=w~-kyv, and
- b dr' - r)2 2(41 &y’
6@)=| Gy exol- =/ Rer e ac). @

The terms «c(66% and (6+° have been previously computed for a uniform magnetic field.%5 The new
broadening term o (%,/v,)? represents an additional stochastic change in #, due to nonlinear motion,
dso/dt' =— (v, /Rq)(d1ng/87)67(t'), which gives the dominant broadening («cw,) in a sheared field.

The average displacements appearing in Egs. (3) and (4) may be evaluated by substituting f;ﬁ from
Eq. (2) into the quasilinear equation®® for F,, yielding (66% =2Dg¢'/7* and (6% =2D,,t’. Here, the
diffusion tensor for electrostatic turbulence is

D=(c/B)? g (aX VL X VR Ly), ©)
with L =® — ;/c)A,. Noting that (67 ¢,)07 ¢,) =(67%(t, -t,l)) =2D,,It, —=t,|, Eq. (3) becomes
Re® =, dr exphiw’t’ 1"/t oo - ¢/t FIG(@), ©)

where t.0™' =koDgo is the shearless decorrelation frequency,* and ¢,"*=[k,/v,)?D,,/3]"® is the decorre-
lation frequency in a sheared magnetic field, which vanishes in the absence of wave-particle energy
transfer. As noted previously, for tokamaks £=(wi.0)™'<1, and thus G(®)= @ (r) +D,,t'8%® /372, repre-
senting turbulent broadening of ¢ over a correlation length L =Dt )/2, This contrasts with the shear-
less case where Ar?/L (™ ~1 and G(®) =®(r) exp(~ #,°D,,t’) contributes to the resonant wave-particle
energy transfer.

Using Eq. (6) to calculate the electron density perturbation, assuming F, is a Maxwellian, and invok-
ing the linear ion response (for £<1) together with quasineutrality yields the eigenmode equation:

8%®p/0x2 = [A = 122 +0(x)/x] @ =0. ("

In Eq. (7), x =@ =7,)/p;, where p; = (T‘m‘)‘/z/eB is the ion Larmor radius, g(r,) =m/n defines the lo-
cation 7, of the rational surface, and A =[1 +7(1 =T')) =" jws, /w]d™ contains the basic drift-wave re-
sponse. Here, 7=T,/T;, I',=1,(b)exp(-b), and b = (2¢p;)>. The shear parameter is

1=T"Y L, /L ) (Weo/w)[T (1 +weg/w)d /2,

with L, =—8 lm/o7. The destabilizing electron contributions are contained in o(x) =0,Z[(x, + ix,)/x],
where 0,= (w/we, = 1)ad ™!, x,=0w/Wsy, ¥c=aw /W, @ =(3Tm,/m;)"?Ls/L,, and Z is the plasma dis-
persion function. A Lorentzian form for the resonance function was chosen for analytic and numerical
convenience, although the results given here are not sensitive to this approximation. The quantity

d= (Fo - rl) (T +w‘e/w) +3i(l - w/w'e) (w‘z/wc)xcz
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includes both ion gyroradius and turbulent broad-
ening effects.

The turbulence enters the electron response
function o(x) through the effective collision fre-
quency w,. However, turbulence does not affect
the electrons in the same way as a local (in real
space) number-conserving collision operator,
which is known to have a stabilizing influence on
drift waves in slab geometry.® Indeed, the E
xB (or magnetic) fluctuations scatter the particle
orbits in real space, producing a turbulent flux
of electrons in the kinetic Eq. (1) for f,.

For w,<w, Eq. (7) reduces to the eigenvalue
problem solved in Refs. 2 and 3. As indicated
previously, small turbulence levels can produce
w,2 w. Thus, the effects of turbulence are well
illustrated in the limit w/w,<1. Then the Z func-
tion in the electron response becomes purely
imaginary and there is no longer any nonresonant
electron contribution, which previously led to
stabilization of the linear universal mode in a
quiescent plasma.?3

The destabilizing electron contribution to Eq.
(7) can be treated by perturbation theory (parti-
cularly for w,= w where the numerically deter-
mined eigenfunctions do not depart significantly
from the Weber functions') using the full electron
Z function. The dispersion relation for the most
unstable modes becomes

A+ip +2Z,(x,,x,) =0, (8)
where

Zo=f ol(0)lo(x) xldx/ [, p2dx,
and 7

@o(x) =exp(-ipx?/2)

is the lowest-order eigenmode corresponding to
the propagation of energy away from the rational
surface! for x> Wul, Treating dw,/8x =0 for k|
< Wil yields

2, =200, (1) 2H(= 2i(x, +ix )(EW'?),

where H(Z) = f:e'" (1 +2V23t, The branch
Re(i)/2>0 for Imp <0 is chosen.

For values of w,/ws,Z 0.1 (corresponding to
w,/Rew = 1), the figure shows that with kgp; = 1
and moderate shear (L s/L,=16), the turbulence
destabilizes the drift mode, with maximum growth
rates Imw/Rew~0.2. There is good agreement
between the numerical results using the shooting
code described in Ref. 2 (which predicted stability
for w,=0) and the analytic dispersion relation
Eq. (8). (See Fig. 1.) As the turbulence increas-
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es, the electron growth arising from Z, is weak-
ened and finally reduced to a value where shear
damping, enhanced by turbulent spatial broaden-
ing, leads to stabilization. There is a narrow
range of values for w_, corresponding to a var-
iation in D, over three orders of magnitude, over
which the nonlinear instability is excited and fi-
nally saturates.

The value of w,, and hence the turbulent dif-
fusion coefficient, required for saturation of this
instability can be determined by solving Eq. (8)
at marginal stability. As the turbulence grows,
x,Vitl approaches unity (the mode width is limited
to Ax 2 x, by turbulent broadening). In this limit,
the approximate stability criterion becomes (for
b =1, corresponding to the modes most difficult
to stabilize at fixed shear)

(w"e/wc)z - p'oz(w"e/w)(gﬂbs)-llz
- (1.5}102Xc2)2 =0, 9

where A, =Ad and p,=pd"2, In Eq. (9), the first
term represents broadened electron growth, the
second is due to linear shear damping, and the
last is enhanced shear damping resulting from
the turbulent spatial broadening of the mode,
which decreases the effective shear length [the
®” term in G(®)]. A stabilization mechanism
similar to this latter one has been computed for
a @ machine in Ref. 9. There, however, 7./7,,
>1, so that mode coupling in the fon kinetic

0.3 I

Imw/Re w

FIG. 1. Growth rate (normalized to real frequency)
vs w, (normalized to ws,) for T,/T;=1, Lg/L,=186,
and various values of kgp;, obtained numerically (solid
line) and from analytic dispersion relation (dashed
line).
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equation was the dominant nonlinearity (with
adiabatic electrons).

The maximum diffusion coefficient obtained
from Eq. (9) occurs for b =b,= (1 + 7)*7™2A 5™,
where the nonlinear and linear shear damping
become comparable. Here, Apg= (L g/L,)30m, /i)
is of order unity for tokamaks. The mode width
Ax~ (T3ApgL o/L)Y2(1 +7)22 1, which justifies
the use of the differential Eq. (7). The diffusion
coefficient which results from maximizing D,.,
with respect to b is

D,, =158 32750.5(1+7)% e s/Ls,  (10)

where ¢ =(T,/m,;)"'? and p s2=7p;%. The associat-
ed electron thermal conduction coefficient is «,
=3D,,. If ExB electrostatic turbulence is the
dominant scattering mechanism for these modes,
then Eqgs. (5) and (10) indicate a density fluctua-
tion level at saturation, #/n =Apg(ps/L,) for 7 =1,
in the strong-turbulence limit w,2w’. The coef-
ficient in Eq. (10) is of the correct order of mag-
nitude to account for electron heat transport in
tokamaks outside the ¢ =1 surface, with a fluctua-
tion level of several percent.

In conclusion, destabilization and saturation of
the drift mode in a sheared field have been shown
to result from a resonance broadening mechanism
that dominantly affects electrons. This contrasts
with previous turbulence theories in a shearless
field,* where nonlinear ion damping led to satu-
ration and the electron dynamics were linear.
The present theory predicts saturation at modest
fluctuation levels.
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Measurements of the energy confinement time Tg in the ISX-A4 (Impurity Study Experi-
ment) tokamak are interpreted theoretically using a one-dimensional time-dependent
transport code. The maximum Tz observed as the plasma density is varied over a wide
range occurs at that density above which anomalous electron thermal conductivity leads
to a smaller energy flux than neoclassical ion thermal conductivity.

One of the most striking features of recent ex-
periments in the ISX-A (Impurity Study Experi-
ment) tokamak® is the apparent saturation of the
energy confinement time 75 with increasing plas-
ma density as shown in Fig. 1. Effective impur-
ity control in the ISX-A, as in the earlier Alcator

experiments,? permitted operation over a com-
paratively wide range of plasma density under
circumstances such that radiation was not a domi-
nant energy-loss mechanism in the interior of

the plasma. Since anomalous heat losses de-
crease with density, while neoclassical losses
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