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For the Raman instability in nonuniform plasma, the linear space-time asymptotic re-
sponse consists of two parts, convectively growing wave packets and temporally growing
localized side-scattered eigenmodes. Eigenmodes dominate the response only after the
growth of the side-scattered wave packets is terminated by refraction from their reso-
nance zones. A finite pump-beam diameter typically ends all growth before eigenmodes
appear, except near quarter-critical density. These considerations may reconcile simu-
lations, previous theories, and experiments.

The theory of Raman side-scatter instability' '
has developed in a confusing way (examples to be
given later). This has not seemed to generate
much worry, possibly because the instability has
not been observed in experiments' exceeding
the threshold predicted by theory4 and computer
simulation. ' This should have created even more
worry because a potentially violent reflective in-
stability is hiding behind some saturation mecha-
nism that may not operate or may be detrimental
under laser-fusion conditions.

In this Letter, our first goal is to present a
more complete theory of this instability, in order
to resolve the confusion and paradoxes associated
with the incomplete nature of the several previ-
ous theories. We view this as more than of aca-
demic interest or tying up loose ends, because
of the necessity to have a clear understanding of
the basic features of this potentially important
instability. Moreover, the theory presented here
provides a possible simple explanation for the
lack of experimental evidence for this instability.
This linear (i.e., convective) saturation mechan-
ism is not effective for a single incident laser
beam of power greater than about 3 TW, and thus
could possibly be tested by the new laser systems
that are now becoming available. Most important,
this mechanism is not very effective for spheri-
ca11.y illuminated pellets under typical proposed
reactor parameters, and this would necessitate
the instability saturating under a nonlinear me-

chanism that may have detrimental results (e.g. ,
fast-electron generation). This disturbing pre-
diction motivates our second goal, which is to
encourage experiments designed specifically to
observe and determine the saturation properties
of this instability.

Above a threshold intensity, an electromagnetic
pump wave (frequency ~, wave vector k, =k, z)
undergoes stimulated decay into lower-frequency
scattered electromagnetic waves (cu, & ao, k, ) and
Langmuir waves (0 = ~, —cv„K= k, —k,). For
given ~„ this process is localized to a narrow
resonance zone' where 0 is near the local plas-
ma frequency ~~(z). Thus side-scattered elec-
tromagnetic waves (i.e., waves with coincident
turning point and resonance position) might grow
to a level sufficient to prevent the pump wave
from reaching and heating higher-density plasma
1 egions,

Indeed, temporally growing eigenmodes have
been predicted, ' and computer simulation' (with
periodicity assumed perpendicular to the density
gradient) has clearly shown strong growth until
termination by electron trapping and heating and
consequent severe damping of the Langmuir
waves. But, as mentioned earlier, this instabil-
ity has not yet been seen at all in the many laser-
fusion experiments' apparently exceeding the
theoretical threshold intensity. One possible ex-
planation, ' a linear (i.e., convective) saturation
due to wave propagation out of the finite-diameter
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= V(z -z, ),
Q~c '((u, ' —(up'(z) -c'k„'

+ D i~p (z) —(~0 —|) ] ) ~

(Ia)

Here D= Ku &u (1 —k /k -) i k =(~ —~ 2)~2/c,
k,„=x k,» vo—= eEO/m&uo, and D is evaluated at
the resonance position given by up Q)0 (4)y Eq-
uation (1b) is valid only for Re(~ ) ) 0; the full
expression for Q is symmetric about the lm(~, )
axis. ' The right-hand side of Eq. (la) comes
from the model-initiating noise source 6(f) g(z
-z, ).

Assuming for the moment that we have some-

laser beam, is presented here, but first let us
review the current state of the theory.

The earliest papers' on Raman side scattering
considered wave packets which grow convective-
ly while propagating through their resonance
zones; sometimes also refraction and diffraction
were taken into account. ' Later work' concen-
trated on finding eigenmodes, which are trapped
along the density gradient and grow in time.

Each of these approaches has its limitations.
The propagating wave packets alone cannot al-
ways give the correct late-time response. Less
appreciated is the fact that the eigenmodes alone
cannot reproduce known results in the limits of
uniform density, of zero pump strength, or of
early time. ' For instance, as the plasma density
becomes uniform, there can be no eigenmodes;
yet the maximally growing eigenmode approaches
a finite growth rate which is almost (but not quite)
the known uniform-plasma growth rate. 4 The
early-time response, before the waves have time
to refract and "feel" the density gradient, should
likewise approach the uniform-plasma response
(i.e., no eigenmodes). Finally, as the pump
strength vanishes, the eigenmodes must vanish;
yet there must still be the known response (in
terms of Airy functions, for a linear density pro-
file).

We unify these two approaches to give the cor-
rect linear z-t response to a 5-function source,
through a standard method which, though straight-
forward in principle, is here quite complicated.
We consider a linear density gradient zdn/dz, a
pump Eo polarized along x, and a cold-plasma or
large-pump limit where the thermal convection
of the Langmuir waves can be ignored. The elec-
tric field E,(z, &u„k,) of the scattered electromag-
netic waves is then described by4'

[d'/dz'+ Q(z, u&» k, i)]E,(z, u, » k, j)

how obtained the solution to Eq. (1) with the prop-
er boundary conditions, the complete z-t re-
sponse is then obtained by inverse Fourier trans-
forming in ~, the product of E,(z, &u„k») and the
appropriate polarization e,(~„k»). This integra-
tion is carried out above all poles and branch
points of the integrand in the complex ~, plane
and is usually depressed to encircle the poles
and branch cuts. The integrals around the poles
(z-independent complex frequency) give the eigen-
modes. ' The integrals around the branch cuts
(z -dependent complex-frequency branch points)
give the wave packets'; the wave-packet trajec-
tories are z -t curves of constant saddle-point
(wave-packet) frequency &u,.

The potential Q in Eq. (1) has two roots and one
pole (all functions of &u, ) in the complex z plane,
assuming a linear density profile. Consequently,
we use phase-integral (WKBJ) techniques to
trace E,(z, e„k») across the complex z plane.
Unfortunately, most of the calculations and even
the results are too complicated and lengthy in
form to appear in this Letter. For instance, the
wave-packet contribution alone to E,(z, t, k,J
changes form in nine separate regions of the z-t
plane. ' However, we can describe the general
qualitative results and a few of the more impor-
tant quantitative ones. We refer the reader to
Ref. 7 and to a later publication for details.

The wave-packet z-t trajectories are labeled
by fixed saddle-point frequency. Along each tra-
jectory, the wave packet grows only while it is
moving inside its narrow resonance zone cen-
tered at z, (&u,), where ~~(z,) -=~, —~,. Our WKBJ
approximation prevents us from looking at each
wave packet while at its turning point, but we
can look at it both before and after it has encount-
ered its turning point and check for any changes
(e.g. , in amplitude). In this way we obtain the
exponentiation level I; at which the side-scat-
tered wave packet saturates due to refraction out
of the resonance zone. We find'

I' 2 — ~cos — —' ~ A 2a

where A=D'i2L„/co~'c, L„=(ldnn d/x) ', an-d u~
Note that the side-scattered wave pack-

et also has &u, = (~~'+c'k, i')'i' and thus a unique
frequency ~, = (~, + c'k, i'/u&, ) /2 and resonance
position z,(~,) =z,(k,J for given k,i. For back-
or oblique-scattered wave packets, the exponen-
tiation I'~ is obtained by comparing amplitudes
before and after the wave packet has traveled
through its resonance zone. This just gives the
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well-known result'

r, = —,'~(Dj~,c)' I,„/k„, (2b)

where k„-=(k,' —k»')'~'. For a given source posi-
tion z„ the side-scattered wave packet travels
from z, to z,(k,J and saturates (by refraction) at
the exponentiation level I", at a definite time t,
which is minimized by having the source on the
resonance zone edge (low-density side). Then'

(2c)

where Z =-(c'L„/&u~')' ', The wave packets are
just straightforward generalizations of the wave
packets which make up the entire response in the
limiting cases I.„-~ or v0-0. '

The eigenmodes are localized in z near the
"side-scatter" resonance position z,(k») and,
above a threshold pump intensity (A ~ 0.3), are
temporally growing. 4 However, the coefficient
in front of the temporally growing exponential is
small (and vanishes as L„-~) so that it takes a
finite time before the exponential can overcome
this small coefficient. Even at time t, (arbitrary
z, ), the eigenmodes are still negligible com-
pared to the wave packets; the eigenmodes do
not dominate until at least approximately' time
2(t,);„.The above features of the eigenmodes
and the inclusion of the wave packets in the total
response therefore ensure the correct limiting
behavior.

Thus, for the case considered so far (pump uni-
form in x and y, and given k»), the theoretical
response always evolves eventually to a nonlinear
state where the eigenmodes are dominant over
(or in the case of early nonlinear saturation, at
least comparable with) the wave packets. This
is in agreement with computer simulations'
where periodicity (discrete k„) is assumed along
x and y, and would tend to support the emphasis4
that has been placed on the eigenmodes. So why
has the instability remained hidden experimental-
ly '~ There are probably several possible non-
linear saturation mechanisms, but let us focus
here on a linear saturation mechanism due to
perpendicular convection of the waves out of the
finite laser-beam diameter. As shown below,
the fact that the eigenmodes can dominate the
response only after a certain period of time can
drastically reduce the importance of the eigen-
modes (relative to the periodic situation) except
near quarter-critical density.

To obtain the full three-dimensional space-
time response E,(x, t) to the source 5(t) 5(x —x, )

p ~23 ~ 0 1& (3a)

with the pump power p, = I, d~' express-ed in units
of 10"W. For fixed I'„ this minimum required
power vanished at quarter-critical density (where
~~= ~,/2 and k»= 0) but diverges as &u,j~~ as ~~
-0. Taking (e.g. ) r, -10 and ~~=&a,/3 gives P,
~ 3 x 10"W, which has only recently become
available. The intensity must also be consistent
with Eq. (2a) to give the chosen value of I;; i.e.,

I,=1.0

k»i4
X L g lj2I3/4 1 1x

n 0 0 k2
1

(3b)

where I.„and the pump wavelength Ao are in mi-
crons, and Io is in units of 10"W/cm'. It is

one must integrate E,(z, t, k») over k~and k„.
This converts the former wave packets (in z-t)
into new wave packets with trajectories now x-y-
z-t curves of constant saddle-point frequency (Ul

and saddle-point perpendicular wave vectors k,„
and k». The former eigenmodes along z are
still temporally growing and localized in z near
z,(k») but now act also as propagating "wave
packets" along x and y with trajectories given by
x-y-g curves of constant saddle-point wave vec-
tors k,„and k„. The eigenmode frequencies
~»(k, „,k„) and the position z,(k,J are also
evaluated with the saddle-point wave vectors.
While these waves are traveling within their reso-
nance zones, we can use approximately the uni-
form-plasma result that the response convects
(in x and y) with an effective group velocity V,
equal to (V»+ V,~)/2, where V»-- c'k, jr', and
V»-=e, q'K/Q are the group velocities of the un-
coupled (unpumped) electromagnetic and Lang-
muir waves, respectively. Since the electron
thermal speed v, h is small, we have all waves
convecting in x and y with a velocity V~~~c'k, j/
2u, . Thus, during the minimum time of approxi-
mately 2(t, );„required for the eigenmodes
(along z) to dominate the response, they (as well
as the wave packets) will have convected in x
and y a distance d;„=(t,);„c'k»j~,.

Consider now the realistic situation where the
pump (e.g. , a focused laser) has a finite beam
diameter d~ in the x-y plane. If d~& d;„, all
growth will have ended with the eigenmodes still
negligible (unless the wave packets nonlinearly
saturate early). Observation of the eigenmodes
would require d~ &d;„which translates into
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interesting to note that, for fixed I", and ~~ jr'„
Po is independent of L,„and A.p.

For given pump intensity I„a finite beam
diameter d~ or power &, thus limits the density
range over which the eigenmodes can grow to
dominance and require a nonlinear saturation
mechanism (e.g. , electron trapping and heating,
resulting in suprathermai electrons' ). With a
spherically illuminated pellet, the size of a fixed
polarization region can be used for d~ provided
it is much smaller than the pellet radius. Typi-
cal proposed reactor parameters of I, =10"Wg
cm', L,„=100 ym, A.,=1ttm, and taking u&~=a;,/3,
give such large values of I; (~32) that, even if
d~ «d;„, the wave packets (and possibly the
eigenmodes) would probably saturate nonlinearly
rather than convectively.

In conclusion, we believe that many of the par-
adoxes that confused interpretation of early theo-
ries of the Raman instability, and comparisons
with simulation and experiment, have now been
resolved. These paradoxes are primarily due to
the inability of wave packets alone or eigenmodes
alone to give the correct response in all physical
limits (e.g. , of t, L„, and v,). In cases where
the pump finite beam diameter d~ is not an im-
portant constraint, theory and simulation appar-
ently agree that the eigenmodes eventually be-
come comparable with or dominant over the wave
packets and saturate nonlinearly. For typical
experimental values of d~, however, the eigen-
modes may not have sufficient room (before con-
vecting out of the pump) to form except near the
quarter-critical-density position where the waves
have vanishing group velocity. This reduced
region of automatically required nonlinear satura-
tion (which generates detrimental fast electrons)
may offer one explanation (others are possible)
for the lack of experimental evidence for Raman
side scattering. For laser-fusion reactors, even
if the eigenmodes are reduced in importance by
this effect, the wave packets can be expected to
require nonlinear saturation over most of the
plasma below quarter-critical density.
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