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Octupole-Octupole Residual Interactions and Low-Lyinl 0+ Excited States
in the Isotopes 2U, "U, and 6U
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Solutions applicable for all interaction strengths are obtained for a schematic Hamil-
tonian with pairing forces and particle-hole octupole-octupole forces. The method is ap-
plied to the light U isotopes. Adjusting the particle-hole interaction strength to the meas-
ured &"= 0 excitation energies leads to an immediate explanation for the low-lying 0+
excited states in this region.

The even nuclides in the vicinity of mass 230
are noteworthy because of the extremely low-ly-
ing 0 (K') intrinsic states and also because of
the low-lying 0+ excited states. In this work, I
examine the connection between these two groups
of low-lying states.

The appearance of 0 intrinsic states at ener-
gies well below the 2-quasiparticle gap implies
that 0 correlations may play a very important
role in determining the properties of ground
states and excited states; a role that is much
larger than would be inferred from calculations
based on a BCS vacuum, such as quasi-random-
phase-approximation calculations. Higher-order
effects have been taken into account through sec-
ond order in the particle-hole interaction and
have been found' to be quite important. There re-
mains a question as to whether or not still-higher-
order diagrams are important, as well as the
possibility of stable octupole deformations. In an
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early calculation looking into this latter possibil-
ity, it was concluded' that there are no nonzero
octupole deformations for ground states in this
region. In a later calculation, ' the suggestion
was raised, for the Ba and Rn isotones, that
there is a nonzero octupole deformation associ-
ated with the 0 excited states, but not with the
ground-state, 0' band. In addition to these two
possibilities, there is the alternative of the oc-
tupole particle-hole interaction being in the "tran-
sition" regime. This regime of interaction
strengths is not accessible to either of the two

types of calculations mentioned above. In this
work, I consider solutions of a Hamiltonian with
both pairing and octupole-octupole interactions
that treat the pairing and octupole correlations
on an equal footing in both the ground state and
in excited states; solutions that are applicable
in the vibrational, transitional, and rotational re-
gions of the octupole interaction.

The Hamiltonian I use here is

—V 5~ ~~ (K, ~~'y, 'II, )a, pa, , Q Q(m, ~r'Y, '~n, .)a,,ta„,„
V=&,2 Ksl v'~v m, n

where the indices v and v' denote the type of nucleon (proton or neutron); e, a single-particle energy
in an appropriately deformed Woods-Saxon potential; N, a number operator; and a„g and a, are crea-
tion and annihilation operators. The pairing term is conventional; the octupole-octupole partilce-hole
term includes n-n, P-P, and n-P contributions. I use deformation parameters' v, =0.19, v, =-0.04 and
pairing interaction strengths G„=21/A MeV, G~ =30/A MeV. I have treated the octupole interaction
strength, V, as an adjustable parameter in my calculations, using it to fit approximately the observed
excitation energy of the 0 band. The 0 band head lies - 10 keV below the 1 level because of zero-
point rotational effects. Note that there is a 3% increase in V as I go from '"U to '"U. As the changes
in this parameter must compensate for the simple form of the particle-hole interaction, possible chang-
es in deformation, and possible deviation of pairing matrix elements from constancy, ' ' I feel that this
is quite satisfactory.

The first set of solutions that I consider for this problem is of the product form suggested in a pre-
vious work. I set

(2)& = II & F
8* II & y. ~..' ]iI e ,s

'

where l0) denotes the physical vacuum and subscripts n and p denote neutrons and protons. The indi-
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ees n and P denote deformed orbitals with the same values of 0 and opposite parities. The indices y, 5,
and & indicate three orbitals having the same value of 0, one of which is of parity opposite to the other
two. In general, the distribution of the active orbitals near the Fermi level is such that a group of
three levels appears to be adequate for a given value of Q. In each group q z I include all configura-
tions of the doubly degenerate orbitals n and P with 0' of 0' and 0 . For qr„z there are six such pos-
sibilities; for fz z, there are twenty possibilities. For purposes of illustration, I note that

p„,s=-U, (a', p)+ U, (n, p)aj'a j +U, (n, p)a8ta Bj'+ U, (n, p)aj'a j'a8j'a 8$

+ U, (n, P)a j'a &j'+ U, (n, P)a/a j'.
Note that jo z conserves neither parity nor par-
ticle number. Previously, I have discussed how
these conservation rules can be taken into account
by introducing correlations' between terms in a
product wave function. Here, because of the deli-
cate balance between pairing and octupole correla-
tions, I have chosen to minimize the quantities
U;(n, P) and U, (n, P, y) for fully projected wave
functions, i.e., wave functions with sharp values
of neutron number, proton number, and parity.
These amplitudes are obtained by solving, itera-
tively, the set of equations

(4)

I carry out a separate minimization for positive-
and negative-parity solutions. There are some
problems in the solutions of Eq. (4). I have found
that solutions can be obtained easily for small
and large values of V. Such solutions are then
used as first approximations to the solutions for
the desired value of V (inerementing V in small
steps). I denote the positive- and negative-par-
ity solutions of Eq. (4) as g,

' and g, respective-
ly. I also consider the opposite-parity projec-
tions of these solutions, denoted as (, and (,'.

In examining the solutions of Eq. (4), I find
that pairing correlations are dominant for the
light U isotopes in the state (,'. In the states
(2, however, the situation is quite different and
the octupole correlations play an important role,
particularly for the neutron orbitals. I consider
'~U in some detail. In '"U, neutron pairing gives
a contribution to the energy of —1.64 MeV for the
state g,

' and neutron-neutron octupole correla-
tions give —0.53 MeV. In the state g, , the two
contributions are —1.55 and —1..14 MeV respec-
tively. This increase in the octupole correlation
energy is completely due to projection effects.
In the state g2 these two contributions are —1.75
and —3.05 MeV, respectively. Comparing these
values with those obtained for (, immediately
shows that there is a substantial difference in the
underlying states P, and g, and that there is a

m, (n, P) =X„X „(&-X,)(& X,). - (6)

I have used all such states with excitation ener-
gies below 2.5 MeV. I have also used G and V as
generator coordinates"'" to get some additional
basis states. I calculate overlaps and interaction
matrix elements exactly, however. Carrying out

~ nonperturbative change arising from the octupole
correlations. Direct examination of (, shows 0
amplitudes comparable in magnitude to 0' ampli-
tudes.

I next consider the energies of the states g,', (2'.
Taking the energy of the state (,' as zero of en-
ergy, I calculate &g, IHI(, ) =2.08 MeV, &g, IHI(, )
= 0.85 MeV, and &g,

'
I HI g, ') = 0.79 MeV. The fact

that g,
' and g, are not degenerate in energy in-

dicates that the solution g, does not correspond
to a region of permanent octupole deformation,
but rather to the transition region for the octu-
pole interaction. An increase of V of = IPO gives
a state g2' with degenerate energies.

The low energy that I obtain for the state (,' is
of considerable interest. It is in good agreement
with the experimentally observed value of 0.81
MeV and seems to offer an explanation for the
long-standing mystery' "of this low-lying 0' ex-
cited state. The problem is not, quite so simple
because the states (,' and (,' are not orthogonal
(& (,' I g, ')= 0.2). Also, the projected product
wave functions are only approximate solutions of
the Hamiltonian of Eq. (I); so we have &g, 'IH lg, ')
+ 0. Diagonalizing the interaction for these two
nonorthogonal states gives an excitation of 0.90
MeV for the 0' excitation energy. I have carried
out a more elaborate calculation of the 0' excita-
tion energy using additional basis states. The
additional basis states are of two types. The
first type involves the projection of a component
from the states g, or g„ i.e. ,

(,P) =i&;(, I='l) —&& (,P)~( (5)

where, e.g. , the symbol K, (n, P) represents a
product of number operators [cf. Eq. (3)],
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this larger diagonalization gives an excitation en-
ergy of 0.87 MeV, which is in quite good agree-
ment with the experimental value. An equivalent
diagonalization procedure gives the 0 excited-
state energy at 0.79 MeV. If we use only a pair-
ing force as the residual interaction, I note that
the 0' excited-state energy is - 1.3 MeV. Using
a density-dependent ~-function force to calculate
pairing force matrix elements, I got 1.35 MeV
for this excitation energy.

I have applied the same calculation to '"U, and
the results are equally encouraging. Adjusting
V to get the 0 excitation at 0.55 MeV, I calculate
a 0' excited state at 0.76 MeV. This agrees well
with the measured value of 0.69 MeV.

In ~U, I adjust V to get a 0 band at 0.68 MeV
and calculate a 0' excited state at 0.90 MeV,
which is in extremely good agreement with the
known excitation energy of 0.92 MeV. However,
the 0' state calculated to be at 0.90 MeV has lit-
tle relation to the octupole interaction. I obtain
another 0' excited state at 1.16 MeV in my calcu-
lation, which is more closely associated with the
octupole interaction. This state has not been
jdentified as yet in U.

In a previous work, ' I pointed out that the neu-
tron pairing matrix elements associated with the

j»» orbitals appear to be somewhat larger than
other pairing matrix elements. I have carried
out another set of calculations with enhanced j»„
neutron pairing matrix elements and find essen-
tially no change in the results.

The best experimental probe of these octupole
correlations is the measurement of F3 transition
probabilities between the 0' and 0 bands in these
U isotopes (and the corresponding Th isotones).
My calculations suggest that there are several
large B(E3) values, although I have not included

Coriolis interaction effects which may modify'
the results somewhat. In Table I, I give the cal-
culated B(E3) values and available measured val-
ues" for relevant Th and U isotopes. Rather
than making use of effective charges, I have nor-
malized the calculated results to the ground-
state transition in '~U and the measured results
to the equivalent transition in '"Th. I note that
the calculated ratios do not change very much if
I use just the proton B(E3) rather than the sum of
proton and neutron E3 amplitudes. An experi-
mental program is now underway at Argonne Na-
tional Laboratory to measure the B(E3) values in-
volving excited 0' states.

Another problematic aspect of nuclides in this
mass region is the magnitude of pair transfer
cross sections to excited 0' states relative to the
ground-state cross section. Experimentally, this
ratio is found to be I5% in (p, t) reaction" stud-
ies and - (Pn in (t,p) reaction" studies. This as-
ymmetry has been ascribed to differences in the
specific orbitals populated in the two reactions.
As I do not have a code for calculating reaction
mechanism effects, I cannot test the wave func-
tions directly. I have evaluated the pair transfer
operator, T~ 8((nla, Ja „JIP) ), for transitions
to both ground and excited 0+ states. Using just
a pairing force to generate wave functions gives
rise to rather small values of T„8 to the excited
state; and the problem, as I have noted, has been
to find ways of explaining the (p, t) enhancement.
Using the wave functions calculated with the oc-
tupole interaction, I find that T„~» (where P* de-
notes the excited 0' state) is typically - 2' of
T 8. This seems to be generally true in this re-
gion for pair removal. Unfortunately, it is equal-
ly true for pair addition. It appears that the prob-
lem is now one of explaining the reduction in the

TABLE I. B(EB) values. Measured values' are for the corresponding
transitions in U and Th isotones.

Nuclide

0+ (MeV)
calc ~

0- (MeV)
calc.

B(ES)
calc.

B{EB)
Th

B(ES)
U

232U

2 32U'

234U

234U

236U

236U

236U

0
0.76

0
0.87

0
0.90
1.16

0.55
0.55
0.79
0.79
0.68
0.68
0.68

{1)
1.25
0.6
1.77
0.83
0.15
0.80

~ ~ e

&0 7 +0.15
~ ~ ~

(0.95~+ 0.2

0.85+ Q.2

~See Ref. 12.
Additional uncertainties due to near degeneracy of 2+ and 8 levels.
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(t,p) reaction.
In summary, I find that a general treatment of

the octupole-octupole particle-hole residual in-
teraction provides a natural, unforced explana-
tion for the low-lying 0' excited states in the light
U isotopes (and Th isotones).

I thank Professors I. Hamamoto and A. Bohr
for stimulating conversations on this problem.
This work was performed under the auspices of
the Division of Nuclear Physics of the U. S. De-
partment of Energy.
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A strong, isolated pole gives rise to periodic structure in backward-angle excitation
functions. A moderate pole interfering with a nonresonant diffraction amplitude produces
similar structure. The 60+ Si backward-angle elastic excitation function is analyzed
from these points of view.

Recent measurements by Braun-Munzinger ef
al. ' revealed a large, oscillatory angular dis-
tribution in the backward direction for "O+"Si
elastic scattering. This discovery generated
considerable interest. ' A number of papers in-
vestigating the experimental and theoretical
ramifications of this phenomenon have subse-
quently appeared. ' "

Barrette et al. ' measured excitation functions
or "O+"Si and "C+"Si at extreme backward

angles and observed some gross structure. Ad-
ditional backward-angle excitation measurements
are reported by Clover et a~. ' and Renner et al. '
Dehnhard et al. ' fitted the elastic "0+28Si excita-~

tion function by introducing a parity dependence
into the optical potential. On the other hand Lee, '
based on a more conventional optical-model cal-
culation, has interpreted the structure of the ex-
citation function in terms of interference between
internal and surface-barrier waves —as it was
done for the case of n scattering. " Here I dis-
cuss a simple, rather general interpretation of
structures in backward-angle excitation functions
for strongly absorbed particles. At present, I
consider only elastic scattering and focus on the
6O+ 28Si data.

The amplitude for the elastic scattering of spin-
less, nonidentical nuclei is given by

Structure in Backward-Angle Excitation Functions for Strongly Absorbed Particles

f( 8) = P (2l+ 1)[exp(i2c, )S, —1]P,(cos6),
i=0

where S, is the nuclear partial-wave S matrix and

exp(i2o, ) = I'(l+ 1+i')/F(l+ 1 —iq) (2)

is the Coulomb partial S matrix, q being the Coulomb strength parameter. Now at 8= w, P,(cosw) = (-1)'
so that Eq. (1) becomes a sum of alternating terms. It can then be expressed in terms of a contour in-
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