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in Alkali Halides: NaC1 and KC1
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A parameter-free calculation of the equation of state for KCl and NaCl is presented
which gives an accurate prediction of the equilibrium lattice constant over wide-ranging
values of pressure and temperature. The results also show a lattice instability which

is consistent with melting.

In this Letter I present a parameter-free cal-
culation of the equation of state of a solid. It is
the parameter-free aspect of this calculation
which is important because it shows that prop-
erties derived from an equation of state can be
calculated from first principles. Here I have
used the calculated pair potentials of Gordon
and Kim' to determine an equation of state for
NaCl and KCl.

In order to compute the thermal expansion and
compressibility of a cubic crystal in the absence
of external fields, we need the free energy, I,
of the system as a function of the volume V and
the temperature T:

F(V, T) = U(V)+ ~P;hv;(V)

+ k Tp,. ln(1 —exp[-h v,.( V)/k T]},
where U(V) is the energy of the static lattice
(electronic ground-state energy) with volume V,
and the v,(V) are the classical normal-mode fre-
quencies of small-amplitude oscillations for the
crystal with volume V(see Sect. 4 of Born and
Huang'). The only assumption needed to derive
Eq. (1) (besides the adiabatic approximation) is
that the phonon energy levels of the system are
those of independent harmonic oscillators with
frequencies v,(V), the quasiharmonic approxi-
mation.

The term quasiharmonic is often used to refer
to that anharmonic effect which gives a volume
dependence to the phonon. frequencies. ' In our
case we are able to obtain the volume dependence
of the frequencies by simply performing har-
monic-lattice-dynamics calculations for a large
number of selected volumes. This is made possi-
ble because the pair potentials are known as a
function of separation. If one has the v,(V), then
the mode Gruneisen "parameters" [y;(V) below]
are obtained as a function of V by numerical dif.-
ferentiation. Including cubic and higher-order
terms in the lattice-dynamical calculation would
effectively couple the oscillators and shift their

and

-=V 'Q;y, (2hv, +hv,./[exp(hv, /kT) —I]) (3)

y,. =(-V/v, . )dv, /dV. (4)

In Eq. (2) P is the externally applied pressure
while dU/dV and -f( V, T) are internal pressures
resulting from changes in the ground-state elec-
tronic energy and the vibrational energy, respec-
tively, as a function of volume. The electrons
are assumed to remain always in their ground-
state (adiabatic) approximation. f(V, T) is some-
times referred to as the thermal pressure al-
though a portion of it, the first term in Eq. (3),
is due to vibrations at T = 0.

The fundamental quantity required to calculate
the equation of state is U, not only as a function
of V, but also as a general function of the posi-
tions of the nuclei. Both dU/dV and f(V, T) have
been determined for KCl and NaCl using the pair
potentials of Gordon and Kim. ' They computed
pair potentials for K'-Cl and the Na'-Cl inter-
actions by assuming a free-electron form for the
electronic energy as a function of the charge den-

sity. The charge density of the molecule was ob-
tained by rigidly overlapping Hartree-Pock
charge densities of the free ions.

We choose V to be the volume per molecule.
Then, dU/dV is obtained from U=6y(r) —oe'/v,
where cy is the Madelung constant, y is the near-
est-neighbor separation, e is the electronic
charge, and y is the short-range part of the pair
potential. In order to calculate f(V, T) we have
solved the dynamical matrix for a rigid-ion

energy levels.
From Eq. (1) and the fact that pressure is given

by P= -(&F/BV) r, we obtain the equation of
state, '

P+dU/dV=f(V, T),

where
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crystal' as a function of V with the short-range
force constants determined by numerically dif-
ferentiating the short-range part of the pair po-
tential.

In Table I we list calculated v for NaCl and
KCl for wave vectors at the I; X, and L points
of the Brillouin zone. Results are shown for
equilibrium lattice constants at zero pressure,
T = 80 and 300 K, and the calculated melting tem-
perature (see below). Notice that the computed
frequencies for T = 80 and 300 K are in reason-
ably good agreement with experimental results. "

Having v,.(V), and hence y,(V), it is a simple
matter to determine f(V, T) from Eq. (3). The
integration (summation over i ) was found to be
adequately converged for 864 regularly spaced
points in the Brillouin zone.

The calculated equation of state for NaCl is
shown in Fig. 1 where the external pressure,
P(V, T), is plotted as a function of the lattice
constant a for several temperatures. The cor-
responding plot for KCl is qualitatively similar.
For NaCl at room temperature and zero pressure
we find a = 5.776 A, 2.6% larger than the meas-
ured value. For KCl, the calculated value, a
= 6.162 A, is 2.0% smaller than the experimental
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FlG. 1. External pressure, P(V, T), for NaCl as a
function of lattice constant for several selected temper-
atures.

value.
Values of the thermal-expansion parameters

~ =-[a(T) —a(293 K)]/a(293 K), showing the tem-
perature dependence of the lattice constants of
KCl and NaC1 at zero pressure, are listed in
Table II for comparison with the corresponding
data taken from Ref. 7. The pressure dependence

TABLE I. Values of v; (in cm ~) for NaCl and KCl for wave vectors at the I', X, and L
points of the Brillouin zone.

T=80K
NaCl
T= 300K, T=80K

KCl
T = 300 K

Vexp.
'V

calc exp. calc. Vcalc.
b

Vexp. calc. Vexp. calc. calc.

172 152

264 312

163 145

261 306

101

270

149 145

218 259

141 139

254

109

228

87 85 93 62 75 58 76 79

142 162

180 163

192 217

143 155

173 155

186 215

105

204

109 151

154 156

159 167

109

146

151

150

166

110

113

162

'Ref. 5.

120 102

142 126

178 190

230 234

116 98

229

137 121

172 186

72

89

163

202

106 105

116 110

152 172

159 182

~Ref. 6.

110

146

155

101

1,06

169

178

80

151

160
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TABLE II. Thermal-expansion parameter, q = ([o(7')
—a(299 K)]/a(292 K)}x10 for KC1 and NaCl at zero
pressure. a(T) is the lattice constant at temperature T.

TABLE III. Compressibility at room temperature:
volume ratio V/Uo for KC1 and NaC1, where Vo is the
volume at zero pressure.

q (calc) ~
KC1

g(expt)"
Nacl

q(calc) ~ g(expt) b
Pressure

{kbar} Calc
KCl

Expt Calc
NaCl

Expt

100
200
400
500
600
800

1000

—580
—290

850
690

1080
1770
2960

-625
—328

416
829

1269
2242
8854

—600
—310

380
740

1190
2200
8390

—660
—349

447
892

1868
2429
3685

5
10
15
20
80

0.976
0.956
0.936.
0.917

0.974
0.951
0.932
0.915~

0.979
0.960
0.943
0.928
0.900

~Transition to CsC1 structure at -20 kbar.

0.980
0.962
0.947
0.932
0.907

Based on my calculated values of a(292 K) = 6.162 A
KC1 and u(293 K) =5.776 A. for NaCl.

~Data are taken from Ref. 7. a(292 K) =6.294 L for
KC1; a(298 K) = 5.640 A for NaCl.

of the lattice constant at room temperature for
these materials is shown in Table III, where cal-
culated values of V/V, (V, is the volume at P= 0)
are again compared with the corresponding values
from Ref. 7. From these results we see that the
calculated equation of state gives a remarkably
accurate prediction of the density of KCl and
NaC1 over wide-ranging values of temperature
and pressure.

Using the long-wavelength method' we find the
following expressions for the elastic constants:

C» = y "(r)/r —1 278e'/. r',

C,2
= —y'(r)/r + 0.056 55e'/r~,

C„=y'(r)/r'+ 0.639e'/r'.

(5a}

(5b)

(5c)

From the equation of state we have ~, and hence

C;, , as a function of T and P. The calculated
temperature dependence of the /= 0 elastic con-
stants for NaCl is shown in Fig, 1 for compari-
son with the experimental results of Hunter and
Siegel. ' The values plotted are the bulk moduli
[1/K= ~(C»+ 2C»), where K is the compressi-
bility] and the shear constants C» —C» and C«.
For KCl we find room-temperature values of 1/K,
C»-C», and C« to be (1.96, 3.35, and 0.94)
x10"dyn/cm' while their temperature deriva-
tives are -(1.7, -3.6, and 0.0) x10' dyn/cm' K),
respectively. The corresponding experimental
results' are (1.82, 3.39, and 0.63) xlO" dyn/cm'
and (-1.8, -7.6, and -0.33) x108 dyn/cm~ K, re-
spectively. The agreement is about as good as
can be expected because our calculations are
based on a rigid-ion approximation of the solid.
We also note that we have compared our results

to the adiabatic experimental values even though
the elastic constants calculated from Eq. (5) are,
strictly speaking, neither adiabatic nor isother-
mal. However, the isothermal bulk modulus
may be obtained directly from the equation of
state.

Now consider what happens, regarding the
stability of the lattice, with increasing tempera-
ture at zero pressure. There exists some criti-
cal temperature, T„, above which P(V, T) no
longer intersects the P= 0 line (see Fig. 1). In
other words, the crystal becomes unstable due to
the vanishing of the isothermal bulk modulus,
-V(dP/dV) r, at T . Above T the vibrational
pressure, which works to expand the crystal, is
too large to be compensated by the electronic
ground-state pressure tending to collapse the lat-
tice [see Eq. (2)]. This is the type of instability
Herzfeld and Goeppert-Mayer' and Kane" asso-
ciated with melting in rare-gas solids. They de-
termined quasiharmonic equations of state using
parametrized potentials together with the Debye
approximation. Our calculated values for T, 1130
and 1050 K for NaCl and KCl, respectively, are
in excellent agreement with the measured melt-
ing temperatures'" of 1070 and 1040 K. The
calculated values of dT„/dP are in somewhat
poorer agreement with experiment. We find dT /
dP =40 Kjkbar for both NaCI and KC1 while the
measured values" are -25 Kjkbar for both ma-
terials. Although Hunter and Siegel have only
measured the adiabatic elastic constants, they
point out that the isothermal compressibility is
larger than the adiabatic value by an amount
proportional to n', where n is the thermal-ex-
pansion coefficient. They argue that because cy

increases rapidly near the melting point the iso-
thermal compressibility probably increases mono-
tonically up to the melting point. When T is exact-
ly the melting temperature, the isothermal com-
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above can be the real cause of melting is still
open to question (see Ref. 10 for further discus-
sion of this point). While the results are less
accurate at high temperatures (because of the
quasiharmonic approximation), the fact that the
equations of state are shown to be both accurate
and parameter free supports the T picture of
melting. If it is not the real cause of melting, it
at least occurs at approximately the same tem-
perature; a temperature which, as has been
demonstrated, can be predicted from a parameter-
free calculation.

I am grateful to J. L. Feldman, H. B. Rosen-
stock, B. M. Klein, D. A. Papaconstantopoulos,
L. 8. Birks, and M. Bass for helpful discussions.

FIG. 2. Calculated and measured shear elastic con-
stants (C44 aud Cii —Ctp) aud bulk modulus (1/X) for
NaCl as a function of temperature.

pressibility of the solid-liquid system is neces-
sarily infinite because of the discontinuous vol-
ume change upon melting and the fact that dT /
dP go.

While the frequencies v,. decrease with increas-
ing T (see Table I), the melting instability occurs
before the lattice becomes intrinsically unstable
due to mode softening. Other attempts to explain
melting have focused upon the temperature de-
pendence of the elastic constants as the source
of the instability. "'" Notice from Fig. 2 that our
calculated values of Cyy Cy2 and C44 are substan-
tially greater than zero at T . Our results there-
fore are consistent with the fact that the resis-
tance to elastic shearing (zero in the liquid state)
is greater than zero for the solid at the melting
temperature. However, I caution again that these
are not isothermal quantities.
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