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is only six, obtained from the maximally sym-
metric ground states.
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The properties of the sound wave propagating in a superfluid two-phase system (liquid heli-
um and its vapor) are investigated. At a frequency sufficiently low so that the superQuid heli-
um and its vapor are in quasistatic equilibrium, there can propagate only one sound mode
whose wave-guide-like velocity depends strongly on the vapor properties as well as the velo-
city of second sound. Near the E point, the mode probes the critical properties of the specif-
ic heat of the superfluid.

The strong coupling between second sound in
superfluid helium and the ordinary sound in the
vapor above it gives rise to an unusual type of
sound which propagates in the two-phase system.
The fact that the entropy convects in a superfluid
at a velocity different from the velocity of the
center of mass is basic to the existence of second
sound, a propagating thermal wave. At an inter-
face between a superfluid and its vapor, this in-
ternal convection modifies the boundary condition
that follows from conservation of mass and en-
tropy at the interface. This new boundary condi-
tion [Eq. (15) below j leads to the new two-phase
sound mode. Whereas the speed of sound for a
classical fluid in such an arrangement is an inter-
polation between the velocities of sound in the va-
por and liquid (in general weighted heavily toward
the vapor), the superfluid two-phase sound in-

volves new independent thermodynamic quantities,
in particular the entropy of the vapor. ExperI-
mental observations confirm many aspects of the
theory.

The position $ of a liquid-vapor interface can
move due to a convection of fluid as well as evapo-
ration and condensation. From basic conserva-
tion laws' one then obtains

where p, s, and v are the mass density, specific
entropy, and velocity field; 3, f, and P,z are the
mass, entropy, and momentum flux densities;
the subscript z denotes a vapor variable and the
subscript + indicates the component perpendicular
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to the surface. For the linear theory at issue
here the entropy law (2) is a valid conservation
law.

For a classical fluid in the Euler approximation,
Eqs. (1), (2), and (3) yield, through eliminating g,
two boundary conditions for the fluid variables at
the free surface:

free
surface-

"~=~v»

(4)

(5)

y„=A cos[k„(H—«)]s'~ ~",

y = Bcos (k,x)e '~ ~"
(6)

The x components of the wave vectors, k, and k„,
are determined by requiring that q„and q satis-
fy the wave equation, giving

K~ = c 2(k~+k 2)

c02 = c 2(k2+ k 2)

(8)

(9)

where c, and c, are the velocities of sound in
the vapor and in the liquid. Applying the bound-
ary conditions (4) and (5) using the definitions v
= Vp and p = —p &p/st yields for the speed (c= cu/

k) of the traveling mode at long wavelength (kH
«1)

1+(c.'/c, ')(p./p) [L/(H- L)] '

For the common case p„/p«1 this reduces to c
= e„, and for the classical fluid there is little
coupling between liquid and vapor.

In the superfluid case Eqs. (1), (2), and (3) also
yield boundary conditions which are, however,
not enough since now on the reversible level
there are three modes to match at the free sur-
face, the extra mode being second sound. As the
energy-conservation law for a superfluid is inde-
pendent from those for mass, entropy, and mo-
mentum, one might expect it to yield the neces-
sary condition. This is not the case because on

where P is the pressure. We consider sound prop-
agation in the s direction parallel to the free. sur-
face (see Fig. 1) and choose velocity potentials
whose perpendicular derivatives vanish at the sol-
id boundaries:

FIG. 1. A schematic cross section of the wave-guide
geometry employed. The direction of propagation of
the sound mode is thez axis out of the page.

(ps(-f, ) -=S=-K&(T- T.) -K(V- t .), (12)

where K, E„, and K~ are transport coefficients
describing the off-equilibrium mass (entropy)
flows which result from chemical-potential (p)
and temperature (T) differences, and where M (S)
is the mass (entropy) per unit area of liquid to
evaporate Equat.ions (1), (2), (3), (11), and (12)
yield four boundary conditions for the fluid vari-
ables connecting the four modes (including ther-
mal diffusion in the vapor) which interact at the
interface. For He II we set

f = psv„,

whereas for the vapor

(13)

fs= pvsovo (so/T)~To. (14)

For a superfluid interacting with its vapor we ob-
tain instead of Eq. (5) the new boundary condition

the linear level the energy boundary condition is
redundant.

Variables such as temperature which describe
reversible effects in the He II correspond with ir-
reversible phenomena (e.g. , thermal conduction)
in the vapor. Thus one must introduce the dynam-
ical coefficients describing the evaporation-don-
densation exchange with the vapor. Following
Bergman's approach for third sound' we set at
the free surface

ps(v-v„) =p„s„(v-u„) +p„s(v„v„) +(a„ /-T)[(p-p„) /p]V T„, (15)

whereas Eq. (4) remains unchanged. Solving (1) for $ and substituting into (11)and (12) yields the re-
maining conditions sufficient to match up the four modes.

We look for a solution in the same geometry as Fig. 1 with velocity potential and temperature in the
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vapor given by

p„=A cos[k„(H- x)]e'~
57 „=((az'/ap), io)p„i cos fk„(H x-)]+ C cos [@~„(H x-)])e'

(16)

(17)

au = It„(k'+0~„') (16)

with y„ the ratio of thermal conductivity to spe-
cific heat per unit volume. In the liquid the ve-
locity potentials for the center-of-mass and nor-
mal-fluid second-sound motion are

q =Bcos(n, x)e'~

p„,=D cos(a~)e'~ (20)

where k~, is determined by the thermal diffusion
equation, giving Substituting these relations into the boundary

conditions yields a dispersion law for the speed
and attenuation of the mode. At low frequency the
problem can be greatly simplified by noting that
the left-hand side of (11)and (12) is higher order
in the frequency than the right-hand side. Thus
at sufficiently low frequency the temperature and
chemical potentials must be equal. In this way
the thermal conductivity can also be neglected
and the boundary conditions

(23)

where

o)s = c '(k'+ 0 ') (21)

ps(t) -t)„),=-p„s„(t)-t)„)„
Gp/5T=dP/d T ~p„s„

(24)

(25)

with

c.' = (p. /p. ) [s'/(»/&'8, ]
being the velocity of second sound.

(where dp//JT is the derivative along the coexis-
tence curve) are sufficient to match the three
propagating modes.

Neglecting p„/p and (Bp/8T)~ the resulting ve-
locity of propagation is

c„'/c, ' —1

)+(c.*/~.*)II./(&-1.) I(n&'n /(P * 4'/."&)J.).' (26)

There is only mode possible in the arrangement
considered, and its velocity is independent of the
bulk modulus of the fluid. The velocity interpo-
lates between the two limits c„and c, as the liq-
uid level L increases. It is important to note
that (26) is the low-frequency result At high . a)

Eqs. (11)and (12) would lead to the classical re-
sult (10). At low frequencies, surface tension
can be neglected and furthermore gravity is a
negligible force for the problem at hand.

Preliminary measurements showing the exis-
tence of this sound mode are displayed in Fag. 2,
where the velocity is plotted as a function of the
fractional filling I/H. The velocities are meas-
ured by observing the resonant frequencies of an
annular channel 1.1 cm wide, 1.0 cm deep, and
11.4 cm in mean circumference. The fundamen-
tal frequencies range between 150 and 700 Hz.
The waves are generated with a heater wire (us-
ing -0.5-mW dissipation) and detected with resis-
tance thermometers (Allen-Bradley nominal 200-
0, s-W resistors} in either the liquid or the va-
por. The cell is gradually filled by condensing
in measured amounts of helium gas. The data
points in Fig. 2 are taken with the temperature

!held constant at 1.26 K. The solid line is Eq. (26}
evaluated at this temperature, and the agreement
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FIG. 2. Velocity of the low-frequency two-phase
sound mode at 1.26 K as a function of liquid level. The
dashed line indicates the velocity of second sound, and
the solid line is the theory, Eq. (26). The vapor veloci-
ty at this temperature is 66 m/sec.
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95-

90-

are several interesting features near the A. point,
2.17 K. As the A. transition is approached from
below, the dominant contribution to the sound ve-
locity of Eq. (26) is given by

85-
c'= [(H- L)/L](p„/p) [s„'/(Ss/aT) ] (27)

30-
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20-
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FIG. 3. Temperature dependence of the mode at L/0
=0.55. The solid lines are the theory.

is good, although in the region 0.2 & L/H & 0.6 the
data points lie somewhat below the theoretical
curve. At this point we do not know whether the
discrepancy arises from experimental effects, or
is due to the approximations inherent in Eq. (26)
where dissipation is neglected. The quality factor
of the mode is generally quite low, starting from
a Q of 27 at L/H=O and then dropping rapidly to
a Q -5 at L/H = 0.2. The Q then gradually increas-
es for values of L/H greater than 0.5, reaching a
value of -20 just before the channel fills com-
pletely.

Figure 3 shows the temperature dependence of
the mode at a fixed liquid level L/H = 0.55. There

which will go to zero at the transition if and only
if the specific heat displays an infinity. For a
value of the specific heat of 32K suggested by
Ahlers' the phase velocity for L=H/2 is about 5

m/sec, which is much higher than c, but much
smaller than c,. Just above T~ there is a discon-
tinuous jump in the velocity to the value c„. This
is observed experimentally: Within 1 mK above
the A. point the vapor peak in the spectrum sharply
reappears. This corresponds to the change in the
velocity of the mode from Eq. (26) to that of Eq.
(10) as the helium makes the transition from a
superfluid to a classical fluid.
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