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An expression given by Pock for the density matrix in momentum space of an electron
in the gth hydrogenic shell is used to derive a prescription for calculating capture cross
sections into arbitrary principal shells of energetic bare projectiles. Application to an

eikonal treatment yields a simple formula showing that capture cross sections scale to

the Oppenheimer-Brinkman-Kramers values with a &-independent factor between 0.1 and

0.4, in agreement with experimental data.

In this Letter we derive a simple prescription
which drastically simplifies the calculation of
total sections for electron capture' ' into arbi-
trary principal shells of bare projectiles. Such
processes become important when heavy, highly
charged ions react with atomic hydrogen:

A" +H-A" '+H'.

This reaction is of technological relevance for
tokamak fusion plasmas heated by a neutral hy-
drogen beam. '

While calculations based on classical mechan-
ics' have been surprisingly successful in re-
producing experimental electron-loss data in the
energy range 50-5000 keV/amu most approaches
to electron capture using quantum mechanics suf-
fer from the formidable difficulties of handling
hydrogenic wave functions with high quantum num-
bers n. A striking exception in simplicity is pro-
vided by the Oppenheimer-Brinkman-Kramers
(OBK) approximation. ""' In this particular
case, a sum rule first given by Fock' and later
rediscovered by May' allows one to carry out the
subshell summations and to derive a closed-form
expression. It is well known' that the OBK ap-
proximation considerably overestimates the ex-
perimental total cross section but otherwise re-
flects the correct behavior. Et therefore has be-
come a common practice" to scale the OBK
cross section down by an empirical Z-independent
factor ot(v) =0.1-0.4. So far it is not fully under-
stood why this scaling procedure works so well.

In this Letter we attempt to furnish a theoreti-
cal explanation. Our point of departure is the ob-
servation that the basic simplicity (regarding
states of arbitrary n) of the OBK approximation
can be carried over to a more general class of
quantum treatments. Let

P„, (q) = fd ry„, (r) exp(iq ~ r)

be the Fourier transform of the normalized hy-

drogenic wave function p„, (r) and
n-1 g

&.(q q') = + + &.i.*(q)P.&.(q')

be the density matrix in momentum space of the
nth principal shell. With these definitions, as
early as 1935, Fock has derived the following
theorem (atomic units are used throughout):

2'mn'q„' .sinnx
P (q'+ q s)'(q" +q ')' n sinx (4a)

with q„=Z/n and x denoting a distance on a four-
dimensional sphere. In May's paper' an expres-
sion for the sum of Eq. (3) is given but is left in
an undeveloped form Equa. tion (4a) has also
been used by omidvar" in his Born treatment of
electron capture into states with asymptotically
high n. The physical meaning of the quantity x
becomes more transparent by rewriting Fock's
expression as

q. lq- q'I
((q'+q. ') (q" +q.')2"' (4b)

In this form Theorem (4) should be useful for a
variety of applications.

It is instructive to first consider the classical
limit. The function d„(x) = sinn x/(n sinx) has the
value d„(0) =1 and for great n has a narrow peak
(of a width n1/n) at x =0. The backward peak
with d„(n) = (-1)""disappears if averaged over
adjacent n. Hence, for great n, the n-averaged
density matrix becomes diagonal as is required
for a single classical orbit and hence for the set
of orbits with the same energy. The prefactor
of d„(x) in Eq. (4a) is recognized as the classical
momentum distribution of a microcanonical en-
semble of electrons' with energy E„=—~q„' nor-
malized in accordance with Eq. (2) and summed
over the n' substates.

Rather than taking the classical limit we use
Theorem (4) for a simplified quantal calculation
of electron capture cross sections. If the pro-
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The replacement of wave functions is equally
valid in momentum and in coordinate space.

As an illustration and application, we calculate
the total cross section for Reaction (1) in the
eikonal approximation. '"' We notice that for
capture into high-Z projectiles high n will domi-
nate and hence the initial and final bound states
will be almost orthogonal. The problem of wheth-
er or not to include the internuclear interaction
in the transition amplitude will then not arise.
Let r, r H

= r + n R, and r„=r + (1—n)R denote the
position of the electron with respect to the center
of mass, the proton, and the projectile nucleus,
respectively, with n = M„/(M„+M„). The pro-
jectile follows a straight-line trajectory H =b+z&
with respect to the target nucleus. A sum rule
similar to Eq. (4) can be applied if we use the
eikonal approximation in its prior form for the
transition amplitude

jectile velocity v is greater than the orbital velo-
city of the electron being captured an atomic
representation is usually justified. Then the
wave functions q'„, (™r)or p„, (q) appear explicite-
ly in the transition amplitude. The dominant con-
tributions arise from q values peaked around v.
Classically, the longitudinal and transverse mo-
mentum transfers at the impact parameter b are
q t~= v and q& = 2Z/(vb) so that sin(& x) ~ 2q„Z/bv'
rapidly becomes small with increasing projectile
velocity v. It is then a good approximation to
put d„(x) =1 everywhere since only the region
around x =0 contributes to the transition. The re-
sulting factorization of the density matrix (4a)
leads to a simple prescription which drastically
simplifies the computation of electron capture in-
to arbitrary principal shells: The total cross
section for electron capture into the nth princi
pal shell of the projectile with charge Z can be
calculated as the capture into the Zs state of a
substitute projectile

upwith

charge Z/n via the re
placement

y„"(z)=nq „(Z/n). (5) The time-dependent wave functions including
translation factors' are given by

and

+„=p„(rH)exp{- ie„t)exp(-i nv ~ r —2in'v't) (7a)

+q -—p„, (rA)exp{-i&„t) exp[i(l —n)v r- Ri(1 —n)'v't]exp(-i J dt/rH). (7b)

The last factor represents the eikonal phase in its prior form. " Inserting Eqs. (7) into Eq. (6) we ob-
serve that the function p„& (rA)/r„ is the only term explicitely containing the coordinate r&. This sug-
gests, in analogy to Eq. (2), to introduce the Fourier transform g„, (q) by

(rA) =(2&) fd qg„, (q)exp(-iq ~ rA). (8)

Eliminitating the Coulomb interaction 1/rA with the aid of the Schrodinger equation one obtains a rela-
tion analogous to Eq. (4)

16rq„' sinn x
gm

In the further reduction" the eikonal phase is replaced by an integral representation given by Gau and
Macek, "and for the resulting exponentials the closed-form Fourier representation is introduced si-
multaneously with Eq. (8). The integrations over r and t =ZR/v can then be carried out. It becomes
clear that the argument q of g„, (q) is almost completely fixed: qt~ =~2+ (1 —q„')/2v and q~=0 because
otherwise the rapid oscillations of the integrand give negligible contributions to A(b, v). As a conse-
quence, if lA(b, v) I' is formed and summed over all substates for a given n we have q= q and may ap-
ply Eq. (9) with d„(x) = sinn x/(n sinx) =1. This is in line with the general arguments preceding Eq. (5).

It is possible to carry our all integrations without further approximations. The details will be pub-
lished elsewhere. " As a result we obtain the total capture cross section

o„„(z,v) = . { )
exp[-2rl tan '(m2 —rl&As)](«+(Y+/&&H)ll'+ ,', eAH'rl ]o„—„(Z,v). (10)

Here, rl=1/v, EAH=&A cH=2(1-Z'/n ), and o„„(Z,v) is the OBK cross section. ' In the particu-
g =7 = 1 ~e recover the result of Dewangan" who used the post form of the eikonal approxima-
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tion. As is well known, for asymptotically high
energies the second Born term becomes domi-
nant" and hence Eq. (10) is no longer valid.

Equation (10) has a remarkable simplicity,
comparable to that of the OBK formula. For
practical applications, one has to sum Eq. (10)
over a great number of principal shells which
all contribute to the capture cross sections. It is
useful to express the result in terms of a theoret-
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FIG, 1. The scaling factor & obtained by dividing cap-
ture cross sections by the corresponding OBK cross
section is plotted as a function of projectile energy. The
curve shows the theoretical result of Eq. (11). The
points indicate experimental data with error bars of
typically 30$ omitted. Open circles, squares, and tri-
angles are from Refs. 16, 17, and 18, respectively.
The data for partially strippedions C and N are from
Ref. 19, for Si from Ref. 20. In all these cases, the ef-
fective charges g,ff given by Olson and Salop (see Refs.
5 and 20) have been used to calculate the OBK cross
sections [g cff(C+ ) =2.4, q ff(C+ ) =q (f(N+ ) =3.2,
q &&(N ) =4.1 q &&(Si ) =3.0 q ~~(Sx ) =4.1, q' &&(S1 )
=5.1]. The data for Fe+~ with q =20-25 are from Ref.
21, All six experimental points fall into the bar indicat-
ed in the figure if Z'=q is used to calculate 00 . The
agreement is actually better than shown here if com-
parison is made with m(Z =25). The data of Refs. 17,
18, and 21 refer to H2 and have been divided by a fac-
tor of 2 for a reduction to atomic hydrogen.

ical scaling factor n defined by

~capt En+la-n(Zrv)

=n (Z,v)g„a„„(Z,v)

The numerical calculations show that the factor
n (Z,v) is almost independent of the projectile
charge Z (within + 5% up to Z =26). The energy
dependence of the scaling factor or (calculated
for He ') is shown in Fig. l. Also shown are ex-
perimental polntsl6-21 obtained by dividing gcapt
(ezpt. ) by tr„„.For partially stripped pro-
jectiles effective charges have been used accord-
ing to 01son and Salop' for calculating o . The
agreement with the theoretical prediction is quite
satisfactory in view of experimental errors of
typically 30%. It should be noticed that a sensi-
tive linear plot has been used rather than the con-
ventional logarithmic plot ranging over many or-
ders of magnitude. Considering the perturbative
approach underlying Eq. (10) it is surprising that
satisfactory results are obtained for projectile
charges as high as 25. More experimental data
are needed to test the limitations of the present
approach.

So far, we consider Eq. (10) as an explanation
of the empirical scaling rule. We therefore pro-
pose that it should replace the corresponding
OBK formula as a first and simple starting point
for the estimation of total capture cross sections.
We also wish to emphasize that Eq. (10) is just
an illustration —as is the OBK formula"' —for
the use of the replacement rule (5). Other appli-
cations of this rule or the underlying representa-
tion (4) of the density matrix are certainly con-
ceivable.

The authors are indebted to A. Salop and U. Wil-
le for helpful comments and to P. Hvelplund for
communicating the results of Ref. 18 in numeri-
cal form.
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The order-disorder transition in Cs-intercalated graphite has been studied using x-ray
scattering. In CSCs the Cs layer transforms into a liquidlike phase in which the average
Cs-Cs separation is incommensurate with the carbon net. Fundamentally different beha-
vior is observed in a Cs-deficient stage-1 sample where commensurate "lattice-gas"
melting occurs. Evidence is presented which shows that in low-stage material, staging
is closely related to the melting transition in support of the model of Daumas and Herold.

It is well known that certain chemical species
form pure-stage graphite intercalation compounds
which exhibit regular layer-stacking sequences
along the c axis. In an elegant series of x-ray
diffraction studies, ' Parry and co-workers showed

that whereas stage-1 C,M (M=K, Rb, Cs) is three-
dirnensionally ordered at room temperature, nth-
stage compounds C»„M (n & 2) contain two-dimen-
sionally disordered M layers which order (or
freeze) at T=S8, 159, and 163 K for IVI=K, Rb,
and Cs, respectively. More recently, Onn, Fo-
ley, and Fischer' have studied the temperature-
dependent resistivity of C»„M (n = 2, 3) and have
observed anomalies which indicate the presence
of two transitions. awhile stage-2 and higher-
stage alkali intercalates have been extensively
studied, there has been to date no quantitative
analysis of the order-disorder phase transition
in graphite intercalates. In addition, with the
exception of a preliminary report by Ellenson et
al. ,

' melting of the 18 layers in stage-1 com-
pounds has not been addressed. Moreover, the
relationship between melting and staging in
graphite intercalates has not been examined.

In this Letter we report x-ray-diffraction stud-
ies of stage-1 C,Cs and of unusual stage-1-stage-
2 mixtures. %e will show that Cs layers in C,Cs
melt three-dimensionally and that the melting is
dependent on the vapor pressure of the Cs sur-
rounding the sample. The melting transition is
either quasi second order and of the lattice-gas
type, in which Cs atoms commensurately occupy
preferred carbon hexagon sites, or is first order
and incommensurate. To verify these points we
will present data for the liquid structure factors
of the melted layers. %e will also discuss the
applicability of the four-state Potts model' to the
second-order lattice-gas transition. Finally, we
will show that melting and staging are closely
related phenomena in graphite intercalates and
we will present direct evidence in support of a
model for staging which, though proposed several
years ago by Daumas and Harold, ' has received
little attention.

Samples were prepared from highly oriented
pyrolytic graphite (HOPG) using the two-bulb
method of Harold. ' Bxax0.5-mm' pieces of
freshly cleaved HOPG were sealed in evacuated
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