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Monte Carlo Study of an Ordering Alloy on an fcc Lattice
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We report results of computer simulations of a binary alloy on an fcc lattice, equiva-
lent to an Ising system with a nearest-neighbor antiferromagnetic interaction' J& 0 and a
next-nearest-neighbor ferromagnetic interaction -~J, a& 0. Qur data indicate the exis-
tence of a discontinous change in energy and in sublattice magnetization as a function of
temperature, for small o, . For a Z 0.25, the transition appears to be continuous, suggest-
ing a tricritical point at some intermediate o..

nn nnn

n «0, o,.=~1,

where nn and nnn are nearest neighbor and next
nearest neighbor, and the sum goes over the
sites of an fcc lattice.

Different approximation schemes give greatly
varying results for this system. Thus, for nn

interactions, o. = 0, the mean-field approxima-
tion predicts a second-order transition at T = 4J'/

4, the quasichemical approximation predicts a
first-order transition at T = 1.46J/k, while the
cluster-variation method of Kikuchi, using tetra-
hedral clusters, gives a first-order transition"
at T = l.89J/k.

Fol1.owing the work of Danielian, 4 Betts and
Elliot obtained the first five terms in a low-
temperature expansion of the free energy for n
=0. The coefficients in this series (beginning
with the third) depend on the structure of the
ground state, of which there are infinitely many
for n = 0, about which the expansion is made.
[For a &0, only the six maximally symmetric
ground states, two sublattices occupied by an A
particle and two by B particles (CuAu structure)
survive and the ambiguity in the coefficients is
removed. ] To take account of this degeneracy,
Betts and Elliot averaged over all ground states.
Assuming that the system would undergo a sec-
ond-order transition at some temperature T„

We investigate the phase diagram of an order-
ing AB alloy, equivalently an antiferromagnetic
Ising spin system in zero magnetic field, de-
scribed by the Hamiltonian (in spin language)' '

a=Jan o 0, oJQ —o, o, ,

they tried to estimate T, from the terms in their
series. Using dif ferent estimation methods they
obtain values of kT, /J in the range 1.6-1.9. Cor-
recting what appears to be an arithmetic error
in Ref. 6, we find that the (2, 2) Padd approximant
for the specific heat gives T, =1.V3 J/k and leads
to an energy curve depicted in Fig. 4.

Using the general Landau theory about the
transformation of the symmetry-breaking order
parameter in a second-order phase transition,
Lifshitz concluded" that the transition to the
CuAu structure should not be second order. A

similar question was investigated by Mukamel

and Krinsky' by a renormalization-group analy-
sis of the I.andau-Ginzbur g-Wilson Hamiltonians
with appropriate symmetry. They found no

stable fixed point, in an ~ expansion, for sys-
tems with this symmetry and suggested, in

agreement with Lifshitz's analysis, that the tran-
sition ought to be first order. This is consistent
with the usual interpretation of experiments on
CuAu (Ref. 10) and some other materials (UP,
and Mnp), but is by no means fully established.
(It is indeed possible that our Hamiltonian be-
longs in the same universality class as the Hei.-
senberg model with cubic anisotropy. ")

ComPuter simulations. —The simulations were
carried out by the Monte Carlo method in a cube,
with periodic boundary conditions, containing N
= 2048 sites. Starting with some initial configura-
tion we applied single-flip (Glauber) dynamics to
bring the system to and keep it in equilibrium at
a specified temperature T. The energy and mag-
netization of each simple cubic sublattice (there
are four) were then averaged over time intervals
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of length between 500 and 2500 attempted inter-
changes per site.

In simulating our system at high temperatures
we generally started with a random configuration.
However, because of the slowing down of the
Glauber kinetics at low temperatures it was not
feasible to start with a random configuration to
obtain equilibrium states at T(T,. These were
generally started either in perfectly ordered
states or else cooled or heated from nearby equi-
librium states. Starting from an ordered state
was particularly important for obtaining stable
values for the sublattice magnetization in a rea-
sonable time and was crucial for n = 0 when, be-
cause of the degeneracy of the ground state, our
system of 2048 particles is not perfectly ordered
on the four sublattices even at T=0.

Plots of average energy, E(T, n) divided by
E(0, a), versus k T/E(0, o,), where E(0, a)/J'= -2
-3+ is the ground-state energy, are shown in

Fig. 1. Plots of the average sublattice magnetiza-
tion versus T/T, (o.) are shown in Fig. 2. T, (o.)

is here taken as the temperature where the ener-
gy graph has the steepest slope, without prejudice
as to the order of the transition; see Table I. As
seen from Fig. 2 the values of T, obtained from
the energy plots are consistent with those indi-
cated by the magnetization.

In Fig. 3 we plot our values of kT, (n)/E(0, n)
versus the variable x, the fraction of the ground-
state energy due ta the nnn interactions, x = 3o./
(2+3@) for o ) 0, to obtain a phase diagram of
our system. For x =1, the system splits into
four independent simple-cubic lattices with nn

ferromagnetic interactions. Extrapolation of our
plots to x = 1 gives a value for the critical tem-
perature within a few percent of that computed
from extended series expansion. " It is general-
ly accepted that the transition for this system,
x=1, is second order.

An inspection of Figs. 1 and 2 suggests that for
small values of n there is an energy and sublat-
tice magnetization discontinuity which is absent
for large n. This gives strong evidence, but no

proof, for a changeover from a first- to a second-
order transition with the likelihood of a tricriti-
cal point around Q. =0.25, x =0.27.

Critical exPonents, metastable states. —Since
phase transitions can be defined unambiguously
only for infinite systems there is always a ques-
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FIG. l. E(T,a)/E(0, n) vs kT/E(0, a) for values of a
shown. The left and bottom scales are for the three
smaller values of n where the discontinuities are indi-
cated. The top and right scales are for u «0.25 where
the transition is continuous. The transition points are
indicated by arrows.
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FIG. 2. Plots of the sublattic magnetization vs T/T
for all o. .
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FIG. 4. The energy E(T)/E(0) vs kT/E(0) for u = 0
is shown by circles. The triangles are the metastable
points obtained by heating and cooling across T shown

by the vertical line. The solid curve is given by the
(2, 2) Pade approximant {Ref.6). The T, given by both
series and the cluster-variation method are shown.

FIG. 3. Plot of kT,(u)/E„(u) vs x= Bu/(2+Su). The
point at x = 1 is the series-expansion value.

tion as to what can be deduced from computer
simulations on small systems. This question
has been discussed extensively"'" for the case
of a second-order transition, which corresponds
here to large values of n. Strong arguments have
been given for a scaling behavior of the observed
critical temperature T, (N) with system size ¹

Carrying out simulations at u = 6 (x = 0.9) for two
additional values of N, X=500 and 4000, and us-
ing the scaling relation" T, (N) = T, (~)[1 —a/N /'],
where A. =1/v, v=0.64, we estimate kT, (~)/4J
=—7.8 and the exponent P for the sublattice mag-
netization to be in the range 0.26-0.32. The
values of the specific heat for g + 7', could be
fitted reasonably well by the formula"

c/k = A [1 —T/T ( ) ] + h,

This is consistent with Ising-like behavior but
is certainly no proof. '

At a first-order transition, the situation we
have for small n, the probability distribution for
the energy, P(E, T), at a temperature T, will
have two peaks, centered about the mean energy
in each of the coexisting phases. In the limit of
an infinite-size system one of the peaks domi-
nates at any 7.

' p T„ the transition temperature in
the infinite system. The ratio of the peak heights
should behave asymptotically as exp[ @(T)N],

where N is the size of the system and cp(T) =0
for T= T,. For a finite system, ((~)') will
have contributions both from the fluctuations in-
side each peak and from jumps between peaks.
As may be expected, it is impossible to disen-
tangle these different contributions unambiguous-
ly and no attempt was made to do so. The exis-
tence of the two peaks was manifest, however,
in plots of energy versus time at a =0 and 0.05.
Indeed, the secondary peak may, at any tempera-
ture, be related to a metastable state and these
were observed at values of energy shown, for n
=0, in Fig. 4. While these values are not very
precise, they support our belief that the transi-
tion for small n is first order.

Ground states, low-temperature phases, and
series expansions. The fcc—system with nn anti-
ferromagnetic interaction —J', J'&0, between
spins a distance I. apart. This makes the degen-
eracy of the ground state equal to M, finite (but
large), including always the maximally symmet-
ric ground states discussed earlier. Slawny"
now shows that despite this N-fold degeneracy of
the ground state the free energy is, at sufficient-
ly low temperatures, given by the asymptotic
series obtained from the expansion about the
maximally symmetric ground states; i.e., no av-
eraging over all ground states should be used. It
seems very likely that this will also be the case
for J'=0 or L-~~i.e. , our system with 0. =0—when the degeneracy is infinite. This also sug-
gests that the number of low-temperature phases
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is only six, obtained from the maximally sym-
metric ground states.
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The properties of the sound wave propagating in a superfluid two-phase system (liquid heli-
um and its vapor) are investigated. At a frequency sufficiently low so that the superQuid heli-
um and its vapor are in quasistatic equilibrium, there can propagate only one sound mode
whose wave-guide-like velocity depends strongly on the vapor properties as well as the velo-
city of second sound. Near the E point, the mode probes the critical properties of the specif-
ic heat of the superfluid.

The strong coupling between second sound in
superfluid helium and the ordinary sound in the
vapor above it gives rise to an unusual type of
sound which propagates in the two-phase system.
The fact that the entropy convects in a superfluid
at a velocity different from the velocity of the
center of mass is basic to the existence of second
sound, a propagating thermal wave. At an inter-
face between a superfluid and its vapor, this in-
ternal convection modifies the boundary condition
that follows from conservation of mass and en-
tropy at the interface. This new boundary condi-
tion [Eq. (15) below j leads to the new two-phase
sound mode. Whereas the speed of sound for a
classical fluid in such an arrangement is an inter-
polation between the velocities of sound in the va-
por and liquid (in general weighted heavily toward
the vapor), the superfluid two-phase sound in-

volves new independent thermodynamic quantities,
in particular the entropy of the vapor. ExperI-
mental observations confirm many aspects of the
theory.

The position $ of a liquid-vapor interface can
move due to a convection of fluid as well as evapo-
ration and condensation. From basic conserva-
tion laws' one then obtains

where p, s, and v are the mass density, specific
entropy, and velocity field; 3, f, and P,z are the
mass, entropy, and momentum flux densities;
the subscript z denotes a vapor variable and the
subscript + indicates the component perpendicular
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