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s 30'), it appears that the mechanism of momen-
tum transfer and energy dissipation at projectile
energies of about 20 MeVinucleon is closely con-
nected with the fast emission of a "jet" of par-
ticles preferentially into the forward direction.
The measurement of the projectile-energy de-
pendence of this process should yield additional
important information on the change in the reac-
tion mechanism from deeply inelastic and quasi-
elastic reactions at low energies to fragmenta-
tion reactions at higher energies.
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Qualitative insight may be gained by noting that OA
= 0~ = 90", then ~R ~AcoseA+~B coseB is the sum of
two small terms and pz~ ——pAsineA —Pz sin8~ is the dif-
ference of two large terms. Therefore, pz ~i is better
determined than pzi.
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The narrow experimental width of the Z distribution at fixed mass asymmetry in heavy-
ion reactions is interpreted in terms of a giant dipole mode whose damping increases
with excitation energy. Further theoretical predictions and relevant experiments are
discussed.

The gaint Z1 mode in cold nuclei is best known
through its photoexcitation which is manifested in
a peak at an energy E = VGA ~' with a width of
typically 4-6 MeV. %bile it would be of extreme
interest to study it also in hot systems, this is
not feasible by means of either photoexcitation
or photon decay. We want to illustrate here a
possible way to study the E1 mode in hot systems.
The E1 degree of freedom is involved in the
charge distribution at fixed mass asymmetry in
the binary heavy-ion reactions (and in fission).
This can be seen if one thinks of the intermediate
complex in heavy-ion reactions as a single de-
formed nucleus. Because of the deformations,
the. giant Z1 resonance is split into two compo-
nents: a singly degenerate longitudinal compo-
nent (parallel to the deformation axis) and a doub-
ly degenerate transversal component perpendicu-
lar to the deformation axis. The former compo-
nent is clearly responsible for the left-right

charge fluctuations and controls the fragment
charge distribution at fixed mass asymmetry af-
ter the intermediate complex breaks up. The
equilibration of the E1 mode in heavy-ion reac-
tions, or the equilibration of the neutron-to-pro-
ton ratio of the two fragments, occurs quite fast,
faster in fact than the mass asymmetry degree
of freedom, possibly as a result of exchange ef-
fects which allow for charge transfer without
mass transfer. Accordingly, the most probable
charges can be obtained by minimizing the poten-
tial energy of the two fragments in contact with
respect to the charge of one of the fragments at
constant fragment mass. This well-documented
feature of heavy-ion reactions only provides in-
formation about the potential energy term of the
collective E1 Hamiltonian. In principle one could
obtain information for the whole Hamiltonian by
a measurement of the charge distribution at fixed
mass. Since in the great majority of cases the
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E1 phonon energy is expected to be much larger
than the temperature, the E1 mode is expected
to be in its ground state. As an example, let us
consider the reaction Ni+ Ar at 280-MeV bom-
barding energy, whose mass and charge distri-
bution has been studied in detail. ' From the max-
imum linear dimension of the intermediate com-
plex one obtains the relevant E1 phonon energy:

@co = 94/d = 8-10 Me V,

where d is the semimajor axis of the intermedi-
ate complex. The effect of the neck between the
two fragments is not clear at the present time.
This may shed some doubt on the estimate of the
phonon energy. From the internal excitation en-
ergy of the complex one obtains

T = (E„/a)~'=2 MeV.

Since h&u/T= 4-5» 1, the collective E1 mode
should be mainly in its ground state. Therefore
the Z distribution at fixed mass asymmetry
should be given by the square of the modulus of
the ground-state wave function and the second
moment of the distribution is expected to be

cr,' =h~/2c= 0.6-0.8 (charge units)',

where c is the stiffness constant associated with
the E1 mode, or

1
V(z,)

= 2c(z —zo)'.

The analysis of the experimental charge and mass
distribution shows that mass and charge are
strongly correlated as expected, with a correla-
tion coefficient x= 0.97. However, the intriguing
result for the second moment of the Z distribu-
tion at constant A is

0,' = 0.3 (charge units)'

substantially smaller than expected. The correc-
tion of a,' for particle emission is expected to be
minor because of the stabilizing effect of the par-
ticle binding energies on the probability of parti-
cle emission. (If a proton is emitted, the next
proton will be more strongly bound and less like-
ly to be emitted. ) Even more surprising is the
fact that the experimental value of 0,' is well re-
produced if one assumes just a classical statis-
tical distribution in Z, namely,

c,' = T/c = 0.3 (charge units)'.

The outstanding problem is then to understand
why the distribution in Z is classical rather than
quantal, as expected.

Some hint of what might be happening comes
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from the energy widths of the giant E1 resonanc-
es. These widths are nonzero, thus indicating
that the E1 mode does not give rise to a pure
state but to a state coupled to some doorway
states. In other words, the collective E1 mode
is damped. In photoexcitation, the giant reso-
nance is mainly a one-particle, one-hole (lp-1h)
state and presumably owes its width to the coup-
ling into the 2p-2h. states. In the present case,
at relatively high excitation energy (60 MeV),
the collective mode is an (npmh) state which may
couple into [(n+1)p-(n+1)h], or (np-nh), or
again, [(n —l)p-(n —1)h] states. The transition
may be given by'

2w 2 gU
(p+ 5+1) '

2w, ~ 3(p+ h) —2

= —~'g[ph(p+ h) -2],

where p and h are the particle and hole number,
respectively, U is the excitation energy, and v'
is the average matrix element connecting the gi-
ant mode to the doorway states. These three
transition rates become approximately equal for
p-h states which are near the equilibrium config-
uration. The resulting damping is energy depen-
dent and due mainly to the increasing density of
the doorway states with increasing energy. The
energy width is given by I' =8(X, +X,+A ). It is
interesting to see the consequence of this coup-
ling to the Z distribution. Fallowing Bohr and
Mottelson' with a simple generalization, we can
describe the coupling of the collective state la)
to the doorway states l n). The exact state li) is
given by

where I' =P„ln)(n I, H, is the unperturbed Hamil-
tonian, and V is the perturbation. The overall
normalization is determined by the condition
(i li) = 1. [This, together with (E; -Ho- V) ' = (E,.
-Ho) ', in zeroth-order perturbation theory,
leads to the known results. ]

The relevant charge distribution is given by
p;(z) =f dxl(;(z, x)I', where g;(z, x) =(z, xli) and
x denotes all other variables which must be pro-
jected out. In order to compare theory with ex-
periment we have to consider the average of the
distribution over an energy interval around E;.
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We can write

p;()., = fd [IE~;(, )].,I"(l~,"(, )i').,]

with (t};~' = (; -f)t};]„the "fluctuating" wave func-
tion. The fluctuating part can be shown to be re-
sponsible for the broadening of the distribution.
It leads to a statistical distribution for Z. We
want to show that the first term can lead to a
nax~ozving of the distribution. For this purpose
we have to consider the averaged Green's function
f1/(E; -Ho- V))„. This average has been consid-
ered extensively in the literature. ' For large
systems and high excitation energies only the
average diagonal matrix elements of the resol-
vent have to be considered and it can be shown
that

E;-II —V E;-E -il '

where I' is the imaginary part of the "equivalent
optical potential" describing the dissipation of the
state la) into the states In). Since we have to
deal with particle-hole configurations near equi-
librium, the previous width is equal to the width
which is responsible for the coupling of the door-
way o. with other states. The amplitude of the
state la) contained in the average eigenstate li)
is given by

y 2 "1/2
c, (f) = (}+2(

G

Correspondingly,

c (i) =c,(i)

In summary, and omitting for simplicity the
bracket of the average,

'L =cg z a + ~c~s A

The next step is to establish that the sum over
n in the above equation is a coIIe~ent one and
thus the corresponding term describes a ~ave
packet, i.e. , it leads to a naxxozuing of the dis-

tribution. Although one can simply see that the
bracket combination la)(o. I is invariant under
phase transformation of the vectors I o), the
following formal proof demonstrates it clearly.
Assume, namely, that V, are random numbers,
Q„V,„=O, i.e., their phases y,„[V,„=exp(ix, )
x IV, ~I], are random. Using the identity +~ In)(o. I

=1 —
I a)(a I and the fact that (Z~ -Z; —iI') ' is

a smooth function, we can simply show that
P~ c (i) lo.)&0, i.e.,

IVg(Jexp(lxg(})
i ) ~ 0g ir'

This proves that if V,~ is random, the vectors
lo) contain phases which destroy the random
property of V,„. Having established this point
from first principles, we are entitled to use as
first guess a simple-as-possible model. First we

skip the irrelevant variables X and we write the
average wave function associated with the charge
asymmetry coordinate as

q;(z) =c.(i)(.(z)+D 'f, dE c~(i))1~(z), (1)

where D is the level spacing of the available door-
way states and g, (z) is the ground-state wave
function of the Zl mode: (,(z) = (2mh&u/c)"'
&& [-czm/2hv]. Qualitatively one sees already
that, as the coupling increases, the integral in
(1) becomes progressively dominant and the more
In) states that are called into play by the strength
of the coupling, the narrower y;(z) becomes. As
a qualitative first guess on the g„(z) we can use
the plane-wave expression

(t} (z) = (27)'hie/c) exp[iz(c/2h(d) (EJD ) ]

where the plane waves are normalized to unity in
a z box of volume corresponding to that of the
harmonic oscillator. The term (E„/D,)"' scales
the energies in terms of the average single-par-
ticle spacing D,. We further assume the matrix
element V, can be replaced by an overall aver-
age value v. The integral in (1) can be evaluated
by integration in the complex plane and gives a
result

q; (z) = c.(~)I(.(z) + '" exp fz(cia}fld)"*(}(D,}"'(z—, —(T)"'
I

.2mV, 2mkcu +2
(2)

The second moment of the z distribution, 0,',
can then be obtained from the z distributions giv-
en by the square of the modulus of Eq. (2).

A simple calculation can be performed in order
to obtain the energy dependence of 0,2. The ma-
trix element v2 can be estimated by requiring the
energy F. and the width T' of the giant resonance

for the corresponding spherical nucleus to be 15
and 4 Mev, respectively. Furthermore, we take
the most probable number of quasiparticles in
the excited intermediate complex to be 1+p+ h
= (2gE)~', where g =D, ' is the single-particle
level density and has been taken to be equal to g
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FIG. l. Energy dependence of the quantal (curve 1)
and of the classical statistical width (curve 2). Curve
3 represents the sum of both widths and the point indi-
cates the experimental value.

= (6/m') &A/10 MeV '.
The second moment of the quantal distribution

0, versus excitation energy is given in Fig. 1.
The narrowing of the distribution with increasing
energy is quite evident. Since this calculation
does not include thermal fluctuations, which cor-
respond to the fluctuating part of the wave func-
tion, they are introduced in the simplest way,

2= 2 2a's =O~,g +~8,r s

where the labels Q and 7' stand for quantal and

thermal. The thermal width can be rigorously
estimated by the same techniques as for the fluc-
tuating cross sections in the statistical theory.
It depends on the level densities only. The esti-
mate which we gave for the thermal fluctuations
corresponds to classical Boltzmann statistics.

The possibility of experimentally observing the
minimum of o, and its rapid rise with decreasing
energy is of extreme importance because it would

provide us with information on the damping of a
giant resonance in a hot nucleus. This is particu-
larly true in view of the extremely difficult alter-
natives, like y decay from highly excited nuclei,
etc.

The only experimental result shown in the fig-
ure is a heavy-ion example. Similar data are
available in fission. Of course they do not prove
our point. Until we can be assured that our guess
for he@ is a reasonable one (within a factor of 2),
the experimental data should be considered as
circumstantial evidence in favor of the present
theory. Further theoretical work and experi-
mental measurements at energies closer to the
barrier will eventually tell the rest of the story.
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A nonresonant diffraction-model calculation is found adequate to describe the gross-
structure behavior thus far observed in the ~ C+ 2C and 6Q+ 6Q inelastic scattering exci-
tation functions.

The prominent gross structures observed' ' in
the single and mutual ine)astic excitation yield of
the 2+ first excited state of "C in "C+"C coOi-

sions have been discussed in terms of carbon-
carbon molecular resonances. ' Similar gross-
structure behavior has been found in the cross
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