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By an exact calculation for an Ising chain it is established that single-ion (electronic) ener-
gy levels are temperature dependent in anisotropic paramagnets. The effect is produced by
developing anisotropic spin-spin correlations and, in a more general context, is investigated
using the correlated-effective-field statistical approximation. It should be directly observ-
able by spectroscopic means in strongly anisotropic paramagnetic systems.

Most crystal-field- split electronic excitations
involving magnetic ions in concentrated magnetic
systems are dispersionless. ' They can therefore
be thought of as effective "single-ion" excita-
tions. The exceptions are those which involve
levels possessing nonzero matrix elements of ex-
change energy with thermally populated states. ' '
Although optical spectra dominantly contain
modes in the latter category (at least in absorp-
tion) the gross effects of magnetic order upon
them are in fact often well accounted for by sim-
ple (dispersionless) molecular-field theory, "'
due presumably to the relative smallness of the
relevant matrix elements for these cases. In
this picture, the single-ion excitations are shifted
or split by the internal molecular field in an
ordered magnetic phase, but become tempera-
ture independent above the ordering temperature
where this internal field averages to zero. To
my knowledge this temperature independence for
paramagentic phases is still commonly assumed
and no more accurate theoretical discussion has
ever been presented. Experimental evidence for
paramagnetic line shifts is scant, but I have
found one paper" which claims such an observa-
tion ln Dy3A150g2.

In this Letter I establish by an exact calcula-
tion for an Ising linear-chain model that single-
ion energy gaps can indeed be significantly tem-
perature dependent in a disordered anisotropic
magnetic system. In a more general context I
note that the correlated-effective-field (CEF)
theory of magnetism" suggests that this tempera-
ture dependence is present in all paramagnetic
systems which possess uniaxial or lower mag-
netic anisotropy although the effect may be sma11

unless that anisotropy is marked. The effect is
produced by developing anisotropic spin correla-
tions as temperature is lowered and the CEF
theory appears, by comparison with the exact re-
sults in the Ising chain limit, to be an adequate
approximation in most physical situations.

Consider first a spin-1 closed Ising linear chain
with single-ion anisotropy, described by the
Hamiltonian

& = Q [D(S„')2—2JS„'S„~,~],

where spin quantum number S =1, number of
spins N- , and S&+,' =-S,'. Regrouping the
terms in the form

& = ZlsD(~. ')'+sD(~. +i')' —2~~.'~. +x'1,

one notes that the partition function Z can be ex-
pressed in S' representation as

Z=tr QV„,

in which all the matrices V„have an identical
Hermitian form
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8(D+2j) -8D/2 -8(D 2J)-
where p =1/kT and the product II implies simple
matrix multiplication.

By a unitary transformation V'= 8 'VS the ma-
trix V can be diagonalized in the form

t'» 0 O iV'= 0 z+ 0
(oo s
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where

z = 2e sinh(2P J),
~, =2e cosh(2P J) + I +f[2e cosh(2P J) —I]'+Se

Quite generally the largest eigenvalue is z+ so that, for N- ~, we have

(6)

(7)

(" o o ) (0 o 0)
Z'Q y„=(z"+z "+z ") '

O z," O O 1 O =p, '.
a=1 0 0 & s 0 0 0

(8)

The diagonal elements of this matrix make up, by definition, the one-spin Boltzmann distribution for
the problem. Transforming back (i.e., forming the product Sp, 'g ') to the S' representation we find
the one-spin density matrix

(e,* 0 0 )
p, =N, '0 1 0

o o e, 'j
in which

e, =-,'e "~'!z,-2]
and

N, (28,'+1) =1.

(10)

Writing this matrix as exp(-Pg) for the ith spin, we find the single-ion energy levels E„(m =0, a 1)
in the form

ED=0,

E+ y E j 2kT ln +8 2e cosh J 1 +

Since Q 1 IS'10) =0 the excitation E„-E,is dis-
persionless. The significant observation is that
it is also temperature dependent. At high tem-
peratures T - , one readily verifies the ex-
pected (random phase) limit E„-E,-D. At low-
er temperatures, anisotropic spin correlations
develop (S„S„)4 0, (S„"S„,*)=(S„"S„,")=0
and, unlessD &0 and D & 2I J I, they finally satu-
rate as T- 0 to produce the low-temperature
limiting form E„-E,-D —4I&l. If D &0 and D
& 2 IJI, the exchange interactions are not strong
enough~to overcome the effects of the crystal
field (which favors the S'=0 local state) in the
low-temperature limit, and the «correlations
pass through a maximum with decreasing temper-
ature to vanish again as T -0. The correspond-
ing T -0 energy gap is E„-E,=D. The two
qualitatively different situations are exemplified
by Figs. 1 and 2, where we compute the energy
gap numerically from (12) and (13) for the cases
D =10k, J=2k andD =10k, J=10k, respectively.

Having established the existence of tempera-
ture-dependent single-ion energy gaps by exact
calculation for one particular example, we now
examine the phenomenon in a more general con-
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FIG. 1. The single-ion excitation between the S' = 0
and S'=+1 states as a function of temperature for the
Ising chain of Eq. (1) with D =10k and J=2&.

!text. Since the effect is clearly absent in the ran-
dom-phase approximation, it is necessary to go
to an approximation which at very least takes
some cognizance of the existence of static (i.e.,
equal-time) fluctuation phenomena. One such ap-
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FIG. 2. As in Fig. 1, but for parameter values D
=10& and J =10&.

a physically significant way, and the energy gaps
will be temperature dependent. For single-ion
excitations, as defined earlier, these tempera-
ture-dependent gaps will represent actual disper-
sionless excitations of the many-body system.
For others the eigenfunctions and eigenlevels of
(16) serve only as an effective-field basis for the
description of wave-vector-dependent propagating
excitations. Even here, however, a neglect of
the last term in Eq. (16), i.e., the use of HPA,
may produce serious errors in the predicted
temperature dependence of the resulting mode
dispersion.

Finally, we use the CEF theory in the Ising
linear-chain context of Eq. (1) to examine its re-
liability. For this case only n' is nonzero. It is
given by

g. (1 + g 2)1/2

where
proximation is the CEF scheme set out in Ref. 11.
For a many-body Hami1tonian

g( PP( 5 P 5 g xS xS
and

0T[1+ 2 exp(- E/0 T)]
8Jexp(- E/k T) (18)

in which K; defines the isolated-ion crystal-field
energy levels, the equations of motion for the
spin components S;" (p, =x,y, z) at the ith site in-
volve effective-field operators h" =5~,2J;, S, ",
where p.& &. In augmenting the random-phase
approximation h"=h~A"=5~, 24;,. (S,"), the CEF
reads

g 0( ff) ~ Q P J x~x(S x)a (16)

Clearly in the high-symmetry situation with
=J„and e"= a (3 =x, y, z) the last term in

Eq. (16) reduces to -S~,Z;, aS(S+ 1), a trivial
constant and, regardless of the temperature de-
pendence of the ensuing spin correlations a, the
crystal-field energy gaps will be temperature in-
dependent and just those of the isolated-ion Ham-
iltonian K;. More generally, however, the eigen-
levels of K (eff) will differ from those of Ã; in

including a measure e of the instantaneous cor-
relation between 5; and its neighbors 5, These
parameters a are temperature dependent and
can be determined completely by use of the fluc-
tuations theorem. The resulting CEF equations
of motion can be determined formally, i.e., 8;"
=(~/@)[&;(eff),S;"]from an effective single-ion
Hamiltonian K; (eff). In a paramagnetic phase
and in the absence of an applied field, this Hamil-
tonian takes the form"

E =D —2e'J

is the energy separation E y Ep The numerical
results for D=10k, and J=2k and 10k are also
plotted in Figs. 1 and 2. It is clear that CEF is
essentially a weak-correlation theory. In Fig. 1,
for which correlation n'= (S„'S„„'&/((S„')'&nev-
er exceeds values - 0.2, the CEF approximation
is quantitative. In Fig. 2 the CEF theory is quan-
titative at higher temperatures but, as a meas-
ure of temperature variation, is in error by a
factor 2 as T-0. The error is about 16% at o.'
= 0.5. Since in three -dimensional paramagnets
correlations ~ 0.3 do not normally occur, the
CEF approximation should be adequate for most
real systems.

In an experimental context, what we have cal-
culated is the equilibrium energy splitting. Ex-
perimental observations by spectroscopic meth-
ods" will, unless the excitation frequency is
smaller than the spin relaxation rate, possess
an exchange-induced line shape reQecting the
probability distribution of spin correlations about
their ensemble average. This line shape is de-
termined by spin dynamics and we present no
calcu1ation of such details in this Letter. The
energy shifts [e.g. , of Eq. (19)] then represent
the temperature variation of the center of area
of the relevant lines. These will correspond fair-
ly closely to the line peaks except in one inter-

535



VOLUME 42, NUMBER 8 PHYSICAL REVIEW LETTERS 19 I'EBRUARY 1979

esting limit-~he near-neighbor Ising limit. Here
eigenstates of S' are eigenstates of the complete
Hamiltonian and the predicted temperature varia-
tion will appear only as a weighted intensity aver-
age over a few temperature-independent lines
[e.g. , at energies D and D+ 4J for Eq. (1)] unless
the excitation frequency is less than the spin re-
laxation rate.

In summary we find that single-ion paramag-
netic excitations will be temperature dependent
in anisotropic magnetic systems, the magnitude
of the effect being proportional to the product of
ground-state exchange and the degree of correla-
tion anisotropy. The effect should therefore be
completely absent for magnetic moments in a cu-
bic environment (e.g. , for systems like KNiF„
EuS, NiO, CoO, Pr,Tl), should be present but
small for S-state ions in a lower-symmetry en-
vironment (e.g. , MnF„KFeF„BaMnF4, GdC1, ),
and should be largest in highly anisotropic mater-
ials like K,CoF4, Rb, reF4, CoCl» RbFeC13,
CoF» Dy,A1,0», and (double-hep) Pr.
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The critical behavior of Cr near the first-order antiferromagnetic transition at B8.5 C
has been studied by neutron scattering. This study reveals the existence of a sharp cen-
tral peak at the satellite position in a narrow temperature range just above TN. It exhi-
bits a very singular temperature dependence such as the two-dimensional planar model
predicts. Such unusual behavior supports the conjecture that the two-dimensional planar
model is realized in the critical region of Cr.

Metallic chromium, Cr, is known to exhibit a
very interesting itinerant antiferromagnetism,
and many of its properties have been studied ex-
tensively. ' An investigation of very pure, nearly
strain-free Cr showed that the paramagnetic-
antiferromagnetic phase transition at TN = 38.5'C
is of first order. ' Despite numerous attempts
based on the itinerant theory of magnetism to
clarify the origin of this transition, '4 no satis-
factory explanation has been reported yet. How-
ever, only quite recently have Bak, Krinsky,
and Mukamel (BKM)' given arguments based on
the renormalization-group theory that certain
phase transitions which involve a doubling of the
unit celt. should be first order. Cr exhibits a
transverse sinusoidal magnetic structure with

propagation vector Q=[Q00]. Accordingly, the
order parameter appropriate for describing phase
transition in Cr has twelve independent compo-
nents. The I.andau-Ginzburg-Wilson Hamiltonian
for the system with twelve-component vector has
no stable fixed point in the ~ expansion, which
has been asserted to explain the first-order na-
ture of the transition in Cr. Nevertheless, their
theory has the following defect: Cooling through
T~ in zero magnetic field produces an "apparent
cubic" state'; that is, the satellite reflection q
= [+ Q 0 0], [0+ Q 0], and [00+ Q] have equal inten-
sity. The "apparent cubic" state cannot be inter-
preted unambiguously. For example, it may in
fact be a "triple-Q" state with three equal-ampli-
tude Q's coexisting in every region of the crystal.
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