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the interstices of the lattice and that they were
immobile in tungsten at 60, 61, 80, and 90 K.

The temperature at which the interstitial 4He

atoms became mobile in W was determined by
implanting 'He in an FIM specimen at different
T&'s and then analyzing at T„=60 K. The 4He

integral profile determined at T„was independent
of T; only if the 'He was immobile at all values
of T,. However, when T,. was above the tempera-
ture at which the 'He interstitials became mobile,
the He implanted during the irradiation diffused
to the surface of the FIM specimen and entered
the gas phase. Therefore a sharp decrease in
the measured 'He concentration was expected as
T, was increased (see Fig. 1). Since only T, was
varied, significant changes in the integral pro-
file could only be attributed to a sharp increase
in the mobility of the interstitial He atoms at T,
A dramatic change in the integral profile was ob-
served upon increasing T,. from 90 to 110 K; thus
indicating that interstitial He atoms were im-
mobile at 90 K but were highly mobile at 110 K.
By employing a diffusion model, a value of the
enthalpy change of migration (M H, ) of 0.24 to
0.32 eV was estimated.
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A new model for polymer gelation is presented that Predicts new effects that can not be de-

rived from the conventional theory of Flory and Stockmayer. An exact solution is obtained

for the Bethe lattice, and is related to recent experimental results of Tanaka. Under certain
conditions, the gelation curve terminates at the consolute point; at this point, both connectiv-

ity and concentration fluctuations are critical, just as in the random magnet at the percola-
tion threshold.

Recently, there has been renewed interest in
applications of critical-phenomena concepts to
polymers. ' The gelation transition is particular-
ly intriguing, in part due to superficial resem-
blances to the bond percolation problem.

In 1941, Flory' proposed an elegant model of
polymer gelation, which has the virtue of being
amenable to closed-form solution for the special
case in which one neglects the possibility of intra-
molecular binding. Flory's original model and
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FIG. 1. (a), (b) All sites are occupied by a monomer
(open circle), as in the Flory-Stockmayer model of
gelation. The wavy lines correspond to chemical bonds
between two monomers, while ps is the probability of
such a bond being present. (c) The model of gelation
proposed here. Each site can be occupied by either a
monomer (circle) or a solvent molecule (dot). The
wavy line corresponds to a chemical bond. We find pa,
given by Eq. (3), is a function of the temperature.

its elaborations' have proved extremely versatile
in providing a qualitative understanding of a wide
range of gelation processes. In the following, we
shall refer to this model as the Flory-Stockmayer
(FS) model.

In this Letter, we propose a statistical mech-
anical model of polymer gelation that predicts
new effects that cannot be derived from the clas-
sic FS model. First it is convenient to review
the essential features of the FS model. For sim-
plicity, consider the case of polyfunctional con-
densation in a system of identical monomers,
each with functionality f= 4 (cf. Fig. 1). The
monomers are indicated by open circles and the
chemical bonds between the monomer s by wavy
lines. The FS model assumes that for a given
set of experimental conditions, the presence or
absence of a bond between any given pair of mon-
omers is a random event, characterized by a
probability ps. When ps is small, the system
consists of only finite polymers (monomers,
dimers, trimers, . . .); this is the sol phase of
Fig. 1(a). However, when p~ exceeds some criti-
cal or "threshold" value p„ there exists in addi-
tion to the finite molecules a single molecule that
is infinite in spatial extent; this is the gel phase
of Fig. 1(b). The weight fraction of monomers
belonging to the gel molecule (the "order param-
eter") is zero for ps (p, and nonzero for ps)p, .
Today, of course, we recognize the FS model as
being equivalent to the bond-percolation problem. 4

In the FS theory two simplifying assumptions,
which might leave out certain features at least in
reversible gelation, are (i) the absence of solvent
molecules, and (ii) the absence of correlations

between the molecules. The model we propose
does not assume (i) and (ii).

Specifically, we associate an "A site" with a
solvent molecule and a "Bsite" with a monomer.
Moreover, we assume that the sites are corre-
lated as in the lattice-gas or Ising model. In
specifying the interactions, we must consider
that the monomers can interact with each other
in two ways. One is the usual van der Waals
interaction, and the other is a directional inter-
action that leads to chemical bonds. The particle-
particle interactions of this system are reason-
ably approximated by the following nearest-neigh-
bor interactions:

—W~~ P w+w ~,
&$J)

' (2)

where the sums are over all nearest-neighbor
pairs of sites. Here &,.

~ is 1 if site j is occupied
by a molecule of species A and zero otherwise;
a similar definition holds for r& . Clearly m,.

"
+ &,~= 1. For a given configuration of bonds, we
can calculate the partition function from (2), and
then take the average overall bond configurations.

While the thermodynamic properties can be de-
rived from the free energy, the connectivity prop-
erties, which are related to the question of gela-
tion, cannot. We define the "gel" phase to be the
phase where a nonzero finite fraction of mono-
mers are bonded together via chemical bonds to
form a macroscopic molecule.

In order to calculate the gelation threshold

y, (T), we must specify when a pair of monomers
are chemically bonded. We require that (i) they
be nearest neighbors and (ii) their relative inter-
action energy be -E. When two nearest-neighbor
monomers satisfy (ii), we say that a bond is pres-
ent between two monomers.

The probability ps that such a bond is present
between two nearest-neighbor monomers is'

(1 —p„) exp(PE)
P„exP(PWss) + (1 —P„)exP(PE)

'

—W» = solvent-solvent,

—8'» = monomer -solvent,

-e~~ = monomer-monomer

-W» (van der Waals) with weight p„
-E (bonding energy) with weight 1 -p„

The Hamiltonian for a system of N„molecules of
solvent and N~ monomers can be written as

&=-~~~ Z" " ys"-& ss& ~
(f'j & (ij)
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Here p—= 1/kT; k is the Boltzmann constant.
The problem of calculating y (T) is in some

respects similar to the usual site- or bond-perco-
lation problem. However, it is more complex for
the following two reasons: (a) In the "pure" site-
percolation problem, the particles are randomly
distributed, while here they are correlated ac-
cording to the Hamiltonian (2) ("correlated" per-
colation). (b) In site percolation, the vertices
can be occupied or not and the bonds are always
present. In bond percolation the vertices are all
occupied by the particles and the bonds may be
present or absent. In our model the vertices may
be occupied or not and also the bonds may be
present or absent ("site-bond" percolation).
While both the correlated-percolation problem~'
and the site-bond-percolation problem' have
been treated separately, here we treat both prob-
lems simultaneously.

From the above considerations, it follows that
if ps &P, (pure bond-percolation threshold), there
is no gelation no matter how high the monomer
density y. Therefore there exists a limiting val-
ue of the temperature, T,„, with p~(T,„)=P„
above which there is no gelation (see Fig. 2).

,„does not depend on the nature of the solvent.
The previous discussion was restricted for

simplicity to a system of monomers. We have
also extended the model to a system of polymer
chains of M monomers embedded on the lattice"
(cf. Fig. 2). The monomer-monomer interaction
is still assumed to be given by (1). Two chains
are bonded via monomers and the probability
that two monomers are bonded is given by (3).

Next we calculate the equation of state and the
gelation threshold y, (T) for the interior of the
Bethe lattice (see Fig. 2) with coordination num-
ber f= d+ 1 for such a system of chains. The
most interesting case is 0=2.

Bond

Solvent
molecule

Monomer

FIG. 2. Polymer chains (heavy line) embedded on a
Bethe lattice of coordination number f =0+ 1=3. The
open circles are the monomers. The dots are the sol-
vent molecules. The wavy lines are the bonds between
monomers of different chains.
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Following closely the derivation for the pure
site model"'" we find that the volume fraction of
monomers is

R( p, ,'+ N,z)
Rp, '+(I+R}p,a+I '

where R =-Mo(v+ 1)/[Mo(v —1) + 2v] and

& =-(p. exp[W~~s+ ~~~- 2II'~s}]

(4)

+ (1 —p„)exp[P(E+ W»- 2&»)]]
Here p,, is given implicitly in

(p g+ I)N+

1( ')Q ( 0- 1) +1
p) +z

where p, -=exp(P(p, „-p„(0) —M[ps —p, s(0)]}).
Here p,„is the chemical potential of species A,
p, „(0) is its value in the absence of species B;
p, ~ and p~(0) are defined analogously.

We have calculated, applying the "equal-area"
rule, the coexistence curve for three different
solvents (Fig. 3). Following the procedure for
the site-correlated percolation problem, "we
find the gelation threshold

Rz'Cr

[(1+R) o —1]z'+ (5 —1)' '

where o= f M(o —1) + 1]p~ and p~ is given by (3).
In Fig. 3 the sol-gel phase boundary is given

schematically, together with the coexistence
curve for the binary mixture of monomers and
solvent, for three different solvents. We have
also continued the gelation curve (broken line)
into the two-phase region. The solvent param-
eters have been chosen in such a way that the con-
solute point is in the sol region [Fig. 3(a) ], on

the gelation curve [Fig. 3(b) ], and in the gel
region [Fig. 3(c)]. We stress two interesting fea-
tures:

(i) For all the solvents there is a temperature
T~ (below the consolute temperature T,) at which
the coexistence curve crosses the gelation curve.
For T& T~ we have coexistence between sol
phase and gel phase. In addition, in Fig. 3(c),
for T~& T( T, we have two possible gel phases.

(ii) By changing the solvent properties it is pos-
sible to realize the interesting case in which the
consolute point lies on gel-sol phase boundary,
as shown in Fig. 3(b). This particular point Q is
characterized by the divergence of two lengths.
One is the usual correlation length g which di-
verges at the consolute point, and the other is
the characteristic linear dimension of the finite
clusters (the "connectedness length"} g~ which
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FIG. 3. Coexistence curve for the polymer-solvent binary mixture and sol-gel phase boundary for three different
solvents. The broken curve is the continuation of the gelation curve into the two-phase region. The solvents have
been chosen in such a way that the consolute point is (a) in the sol phase, (b) on the gelation curve, and (c) in the

gel phase. T& is the temperature at which the gelation curve crosses the coexistence curve.

diverges on the sol-gel phase boundary. It is in-
teresting to study the nature of point Q, which in
some respects is analogous to the point (T=O,
p =p, ) in the T pphase -diagram of a randomly
dilute ferromagnet [cf. Fig. 1(c) of Ref. 13].

We find that the usual mean-field type of behav-
ior occurs all along the sol-gel phase boundary,
including the consolute point (T„cp,). However at
the point Q we find that (T- T,)/T, is not a scal-
ing variable. It would be interesting to test this
prediction experimentally on a real polymer sys-
tem.

We note that our results reduce to the FS theory
in the particular case in which the monomer den-
sity @=1 (all sites occupied). But in this case,
of course, there is no phase separation, conse-
quently the new effects described in Fig. 3 vanish.

The results presented thus far are for the Bethe
lattice, which corresponds to the physical approx-
imation of neglecting intramolecular interaction
("loops" ). It is known that the neglect of loops
does not affect critical properties in the limit of
high system dimensionality d. Hence the question
is basically whether the results presented thus
far can be expected to be useful in a system of
low dimensionality.

Several points are worth making in this connec-
tion:

(i) Experiments on three dimensional sy-stems.—The results presented thus far are in close
(qualitative) agreement with recent experimental
data on calf gelatin suspended in alcohol-water
solvents. '4

(ii) d=3 model systems. —For the three-dimen-

sional lattice-gas model, we know" that the per-
colation point for the correlated-site problem in
zero magnetic field occurs at a temperature T~
which is smaller than T„as in the Bethe lattice.
Thus, we would expect to find a phase diagram of
the sort shown in Fig. 2.

(iii) d=2 lattice gas.—For the two-dimensional
lattice-gas model with no bond dilution (p~= 1),
we know'" that the line of percolation points ter-
minates at T, (i.e. , T~= T,). Hence, the situation
shown in Fig. 3(c) cannot occur for d= 2.

In summary, we have presented a model for
polymer gelation which predicts new effects
which could not be derived from the original FS
theory. A closed-form solution is obtained for
this model for the Bethe lattice. The phase dia-
gram so obtained is in qualitative agreement with
recent experimental results. In particular, un-
der certain conditions the gelation curve termi-
nates at the consolute point (T„y,).

This work was stimulated in large part by dis-
cussions with T. Tanaka, and we are particularly
grateful for his communication of the extensive
unpublished experimental results. We also ac-
knowledge many extremely helpful conversations
with P. Ruiz; D. Stauffer, F. Rys, R. Bansil, and
P. J. Reynolds kindly commented on the manu-
script. This work was supported by the U. S. Air
Force Office of Scientific Research.
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