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positive mass. By analogy we assign a positive
charge to the solitary hole, and consistency then
requires its effective mass to be negative.? This
in turn implies that the Coulomb repulsion be-
tween two holes gives rise to an attraction. In
order to demonstrate the quasiparticle behavior
of the solitary electron hole, we modified the ex-
citing pulse so that two holes close to each other
and having almost equal velocity were excited;
see Fig. 5. Following their trajectory we ob-
served an attraction and a subsequent coalescence
that prevailed throughout the entire plasma col-
umn. The collision thus appears to be inelastic.
Such a coalescence has already been observed in
numerical investigations.* If, however, the ini-
tial velocity difference is large, two holes are
observed to pass through each other. We may
thus conclude that the observed properties of the
solitary electron holes are indeed compatible
with those expected for quasiparticles, at least
within the limits of space and time in our experi-
mental setup.

We are aware that the solitary holes described
in this Letter may have some relevance for de-
scribing one-dimensional strong Langmuir turbu-
lence.!!
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A discussion of phase transitions in two-dimensional 3He is presented. A new type of
phase transition is proposed, in which “islands of reversed 1” spontaneously nucleate,
leading to an Ising-like transition. It is shown that such transitions may need to be taken
into account, possibly competing with the well-know Kosterlitz-Thouless transition. Con-
sequences of both types of transition are discussed.

Phase transitions in two-dimensional systems
have attracted considerable attention over the
past few years since the discovery of Kosterlitz
and Thouless® that a new kind of ordering (“topo-
logical ordering”) may exist in these systems
when conventional order is absent. This new type
of ordering is destroyed upon the unbinding of
vortex-antivortex pairs (or their analogs) in the
system under consideration. The phase diagram

then exhibits a line of critical points below T,
with continuously variable critical exponents.?
Renormalization-group analyses based on these
ideas have recently been applied to two-dimen-
sional superfluid “He and X-Y ferromagnets,? two-
dimensional solids,® and two-dimensional liquid
crystals.*®

Experimental attention is just now beginning to
be focused on two-dimensional superfluid *He
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films. Although a p-wave superfluid is efficient-
ly depaired by incoherent scattering, it is thought
that on a “specularly reflecting” surface films of.
superfluid *He can exist with the thicknesses down
to and even less than the coherence length &, of the
the Cooper pair. (The possible p-wave states,
however, are limited to those with orbital motion
in the plane of the surface—for the sake of argu-
ment we will take the state to be the bulk-stable
state known as the A phase.) In such films two-
dimensional behavior may be expected to be im-
portant. It is the purpose of this Letter to sug-
gest some possibilities for such transitions in
SHe.

The obvious choice for such a transition is a
Kosterlitz-Thouless phase transition in which
vortices appear in the phase of the order param-
eter, to be described below. However, because
of the richness of the structure of the order pa-
rameter in the superfluid He phases, another
possibility at least should be considered, in con-
trast to those systems previously studied; as
will be shown, this is a two-dimensional Ising-
like phase transition in the ®*He order parameter.

The situation in two-dimensional He is some-
what complicated due to the tensorial nature of
the order parameter which may be written

doi=d;B, +iR,),, (1)

where d is a unit vector defining the spin state,
|A,l =14,/ =A, and the direction T of the angular
momentum is given by le Kz. In small geome-
tries, it is usually a good approximation to treat
the spin and orbital parts of the order parameter
independently, and we will do this here, concen-
trating on the orbital part. It is interesting to
note that a vector order parameter may exhibit
no phase transition in two dimensions?! (c.f. a
Heisenberg ferromagnet) and so for two-dimen-
sional ®He, long-range order in d in the low-tem-
perature phase must arise from spin-orbit coup-
ling to an ordered I. At a surface, I must be
perpendicular to the surface,® so that the order
parameter for *He on a surface is SO(2)xZ,,
where SO(2) describes rotations of the A’s in the
plane of the surface, and Z, indicates that Tmay
be parallel or antiparallel to a given surface nor-
mal. A Toulouse-Kléman’ analysis then indicates
that two topologically stable defects may occur:
point vortices in the A’s which add isomorphical-
ly to the integers, and the border between two re-
gions of antiparallel T, which is its own “antipar-
ticle.””®

Consider now a two-dimensional layer of *He

with the orthonormal triad order parameter de-
scribed above. To obtain as simple a description
as possible, a square lattice of spacing a, of the
order of the Cooper-pair coherence length, will
be utilized with the order parameter given at
each point on the lattice. The gradient energies
for spatially varying order parameters have been
worked out in the three-dimensional case.® ¥
These results assume a slowly varying order pa-
rameter, which limits their applicability to the
present situation, where two adjacent T vectors
may be antiparallel. In order to determine, to a
first approximation at least, the gradient ener-
gies involved in each type of transition consid-
ered, so that their transition temperatures may
be compared, it is necessary to examine the or-
der-parameter singularities involved in more de-
tail.

First, suppose that I is everywhere uniform
over the plane so that the free energy in the con-
tinuum approximation may be written

Fx 3K, [ (Vold%, (2)

where ¢ is a “phase” variable which describes
the orientation of the Kl,zz axes with respect to
some standard orientation, and K , is an elastic
constant related to the superfluid density: K,

=0, 9%%/4n?, where m is the mass of a *He atom
and o,‘®) is the superfluid (areal) density trans-
verse to I. For a not too thin film (thickness d)
and leaving out possible renormalizations o, ‘)
may be related to the bulk superfluid density ten-
sor 0, =dp,)=2dp(®), where p®) is the longi-
tudinal component and the latter equality only
holds for temperatures near the three-dimension-
al transition temperature. The situation here is
reminiscent of “He, and the phase transition oc-
curring will be of the Kosterlitz-Thouless variety
where vortex-antivortex pairs in the phase disso-
ciate. The analysis in Nelson and Kosterlitz® can
then be carried through to yield

(s) 2
. o 8m“ky
Tl_lg‘]' } R ®
c

where the additional factor of 4 comes from the
pairing.

Now consider the case where I is free to vary.
Here we arrive at the possibility of a new type of
phase transition in which the spontaneous appear-
ance of islands of reversed T dominate the high-
temperature phase, destroying the “ferromagnet-
ic” order of the I vectors in the low-temperature
phase. These islands may be classified into two
types: In the first kind the A" and A® vectors
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rotate as the island is circumnavigated, leading
to a net circulation in the superfluid velocity.
(Examples of such islands are described by Mer-
min.'') These islands therefore look like vortic-
es at large distances and will have long-range
(logarithmic) interactions. The second kind of
island has no surrounding circulation, and corre-
sponds to a simple inversion of 1. An example
may be easily generated by rotating the orbital
triad through 7 about a fixed direction in the plane
as the border is crossed going outwards in any di-
rection. In this case one need only consider the
variation of T as one moves across the border,
and the free energy for the discretized model
may be simply written

F:—Klizg (i'i.rihs)y (4)

where K, is the appropriate coupling constant to
be determined, and 1,5 are two-dimensional vec-
tors, with { running over all lattice sites, and
with § a unit vector to be summed over all near-
est-neighbor sites.

This type of island is of interest because its in-
teractions are short ranged, the energy and en-
tropy scale similarly, and the problem reduces
to a two-dimensional Ising model, which has been
worked out exactly.'® Because of the second con-
sequence in particular, the nucleation of such is-
lands becomes a possible candidate for a phase
transition in two-dimensional superfluid *He.
These ideas will now be made more explicit.

If the coupling parameters K, and K , are of the
same order of magnitude (in fact they are, as
will be shown), this Ising type of transition may
successfully compete with the Kosterlitz-Thou-
less phase transition described in Eq. (3). To
see why such a transition may be important, we
follow an argument due to Peierls (see Ziman’s
book!®). From Eq. (4), the energy of a border of
length L lattice spacings is E~2LK,. Further-
more, at any point on a square lattice the border
may continue in any of three directions, so S
=~k In3*. Hence the free energy of the border is
given by

F=E -TS~L(2K,;-FkgyT In3), (5)
yielding a transition temperature
2K
)
Te kgln3”’ )

For comparison, the dissociation of a vortex-
antivortex pair in the phase occurs at the temper-

506

ature given by Eq. (3):

K
Tc"’“%“” , (7)

and so if K; and K, are of the same order of mag-
nitude 7,¢ and T} will also be near each other.

An estimate of K , has already been given. In
order to estimate K, it is helpful to think of a
thicker film, where d, the sample thickness, is
greater than £, and the “small bending limit” ex-
pressions'® may be used. Using as a model the
configuration in Fig. 1, K, is found by estimating
the energy per unit length of the pair of line sin-
gularities on the surface with a cutoff of order d.
The result is

K, b5m 7 \? ozd)
—‘LS— — 1 _
a 4ps<2m> n<go ’ (®)
with ¢ a number of order unity and a ~ ¢, the lat-

tice spacing used. Since In(d/£,) is O(1) Egs. (6)
and (8) yield

n.bmea (7Y
T o in3 <2m > ©)
compared with 7 9 =~ (1p d/ky)(%/2m)? in the
same limit.

It is clear that for d ~a ~ ¢, the two transition
temperatures are of the same order of magnitude
and may in fact be rather close. Of course, the
numerical factor in Eq. (9) is only an order-of-
magnitude estimate—for thin films, a more mi-
croscopic calculation is needed. Our purpose
here is only to suggest the necessity of thinking
about these “Ising” transitions when considering
possible phase transitions in two-dimensional
superfluid films.

The Ising model in two dimensions has been
solved exactly, and a large literature exists on
the subject. Only two points of interest will be

—-————
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FIG. 1. The circular disgyration pattern used as a
model to estimate K;. The arrows represent the 1 vec-
tor.
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made here. First, the exact value of the transi-
tion temperature for a two-dimensional Ising
model on a square lattice with coupling K, is giv-
en by12, 13

2K

T (1) 10

Second, values of critical exponents for this mod-
el are given in Wilson and Kogut.’* In particular,
the falloff of the correlation function (I(¥)I(0)) for
large |T| is given by the exponent =%, which is
identical to the Kosterlitz-Thouless case. In gen-
eral, however, the critical exponents of the Ising
and Kosterlitz-Thouless X-Y model are different,
suggesting one possible experimental means to
decide which of the transitions is actually oc-
curring. Critical exponents for the X-Y model
have been given by Kosterlitz.’® Among the more
interesting features of a two-dimensional Ising-
model transition is the logarithmic singularity of
the specific heat as T, although this may be dif-
ficult to detect. Perhaps more important is the
prediction by Nelson and Kosterlitz? that a Kos-
terlitz-Thouless transition is accompanied by a
finite jump in the renormalized coupling constant
at T,. For %He this leads to a jump in the super-
fluid density at 7 .Y, which, though small, should
be observable. If the transition is Ising-like,
however, no such jump is expected for islands
with phase coherence maintained across their
boundaries; the scheme of Fig. 1 provides one
example of such a border. This suggests that a
useful means for distinguishing between the two
transitions consists in the observation of the su-
perfluid density at the transition temperature,
which may, for example, be measured by the re-
sponse of the film to rotating the substrate. In
addition other possibilities may occur, the most
interesting case being the nucleation of islands
with net circulation, which would interact with
other such islands as well as with point vortices.

There is also the intriguing possibility that 7',
<T !, leading to an intermediate temperature
phase without quasi—-long-range superfluid (phase)
order, but with long-range “ferromagnetic” or-
dering of T which ultimately disappears at 7/ as
discussed here. In any case it appears plausible
that the simple circulation-free islands may have
an important role to play in phase transitions in
thin films of *He.
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