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Formation and Coalescence of Electron Solitary Holes

K. Saeki, ® P. Michelsen, H. L. Pécseli, and J. Juul Rasmussen
Association EURATOM—Risd National Labovatory, DK-4000 Roskilde, Denmark
(Received 6 September 1978)

Electron solitary holes were observed in a magnetized collisionless plasma. These
holes were identified as Bernstein-Green-Kruskal equilibria, thus being purely kinetic
phenomena. The electron hole does not damp even though its velocity is close to the elec-
tron thermal velocity. Two holes attract each other like particles of negative mass, and

coalesce when their relative velocity is small.

The formation and coalescence of electron soli-
tary holes were observed in a magnetized colli-
sionless plasma surrounded by a wave guide.

The experiment was carried out in a setup simi-
lar to that described by Saeki' and by Ikezi et al.?
for investigating collisionless electron shocks.
This experimental setup is particularly well suit-
ed for exciting large-amplitude, strongly non-
linear pulses. The observed electron solitary
holes are a kind of stable (or at least weakly un-
stable) Bernstein-Green-Kruskal (BGK) equilib-
ria® that appear as vortexes in electron phase
space. They were anticipated by Saeki.! Similar,
almost stationary structures have been observed
in one-dimensional computer simulations of the
electron two-stream instability,* while the stabil-
ity of vortexlike configurations in phase space
has been investigated Kako, Taniuti, and Wata-
nabe.® One-dimensional systems were observed
to be most favorable for the stability of such vor-
tices. The mutual interaction of the electron
holes was also investigated in our experiment,
and we found that two holes, which are close
enough and have a small relative velocity, will
attract each other and coalesce.

The experiment was conducted in a single-ended
Q machine, Fig. 1(a). A cesium plasma was pro-
duced by surface ionization on a hot (~2000 K) tan-
talum cathode 3 cm in diameter. A homogeneous
magnetic field up to 0.4 T confined the plasma ra-
dially. The length of the entire plasma column
was 120 cm. Electron temperatures were ~0.2
eV determined by the hot plate. Plasma densities
were in the range 10°~107 em™ and the neutral
background pressure was 107® Torr. Collisions
are thus entirely unimportant for pulse propaga-
tion. We note that w,<w, (w, and w, are the elec-
tron plasma and cyclotron frequencies, respec-
tively). The plasma was surrounded by a ground-
ed cylindrical brass tube, with a 4-cm inner di-
ameter, which acted as a waveguide. Pulses or
waves were excited by applying a potential to the
terminating brass tube of 30 cm in length (see
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Ref. 1for details). Potential variations in the
plasma were detected by a Langmuir probe con-
nected directly to a capacitive amplifier (~2 pF).
A slot in the waveguide surrounding the plasma
allowed 85-cm axial movement of the detecting
probe. We measured the dispersion relation for
electron waves and they were found to be well de-
scribed by the Trivelpiece-Gould mode® including
a thermal correction term, w?=w 2(ka)¥[1 + (ka)?]
+3v,2k?, where 2.4a is approximated by the plas-
ma radius and v,=(7,/m)/? (=2X10° m/s). Ap-
plying a short negative pulse with time duration
7,~27/w, to the exciter, we obtained a temporal
plasma response as shown on Fig. 2. Two dis-
tinct structures are recognized; a fast negative
compressive pulse (i.e., an increase in electron
density) and a slower positive pulse indicating a
deficit of electrons in the following denoted an
“electron hole,” or simply a “hole.” The former
part of the signal is readily identified as the Kor-
teweg—de Vries (KdV) soliton,? propagating with
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FIG. 1. (a) Experimental setup. (b) Space-time dia-
gram of the observed signals.
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FIG. 2. Time pictures of a soliton and an electron
hole at different distances. Applied potential, ¢,, and
measured potential ¢.

a velocity slightly above the maximum phase ve-
locity for the Trivelpiece-Gould mode, w,a
(=~1.2X10° m/s), and has already been examined
in detail in Ref. 2. Here we concentrate on the
slow positive pulse, i.e., the hole. This can
clearly be distinguished from the rarefactive
pulse by tracing it on an (x, f) diagram [Fig. 1(b)).
The rarefactive pulse (outside the time region of
Fig. 2) travels downstream into the exciter tube
and is reflected from the terminating plate.
While the soliton and the rarefactive wave can be
traced from the linear regime, the electron hole
is only excited when the excitation potential ex-
ceeds a critical value ¢,. The hole travels with
a velocity of approximately v, <<w,?, which
shows that it cannot be a simple Trivelpiece-
Gould mode. Experimentally, we find ¢, ~3(m/
e)(w,a)’. We note that the soliton is (Landau)
damped as expected at this plasma density, while
the electron hole, when fully developed, propa-
gates virtually without change of shape. The
soliton, as described by the KdV equation,? is a
fluid phenomenon except for weak collective damp-
ing. If the electron hole could be explained in a
similar way, we would expect it to be damped
more strongly because of its much lower velocity,
in contradiction to observations.

To unambiguously demonstrate that an electron
hole can indeed be excited in the present setup,
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FIG. 3. Waterbag simulation. (a) Potential versus
position for increasing time (t/‘rp: 0.8, 1.6, 2.4, 3.2,
and 4). (b) Waterbag distribution for two corresponding
times.

we performed a computer simulation based on a
simple waterbag model. The calculation method
was similar to that described in Ref. 4, but in-
stead of using periodic boundary conditions, re-
flecting boundary conditions were assumed, these
being the most appropriate for simulating the ex-
perimental situation. A leap-frog scheme was
applied for the movement of the waterbag bounda-
ries. At each step, the electric potential was cal-
culated from Poisson’s equation in the form

S
appropriate for a magnetized plasma in a wave-
guide, where only the lowest radial eigenmode is
considered. Only the simple case with a single
waterbag as initial condition was considered. To
represent the excitation, we applied an external
charge of the form p(x, ¢ ~0)=— po/11 +expl(x
- L)/a]} during the first plasma period, where
L is the length of the exciter tube.

In Fig. 3 the results from such a calculation
are shown. We cannot expect an exact agreement
between the calculations and the experiment, but
the main structures observed experimentally also
are found in the computer simulation. From the
spatial potential variations, Fig. 3(a), we can
identify the soliton [the fastest pulse (1)] as well
as the hole (2) and the rarefactive wave (3) (mov-
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ing to the left). The hole, however, only appeared
when the applied potential step was above a cer-
tain critical value ¢, that in both the experiment
and the simulation was found to be ¢, ~3m(w,a)/e.
This indicates that the hole develops when an
electron beam traveling faster than the charac-
teristic velocity w,a is injected in the main plas-
ma by the excitation.! By following the develop-
ment of the waterbag [Fig. 3(b)], it is observed
that the hole is formed because of an “arm,”
growing in an opposite direction to the soliton,
which creates a vortex in phase space. This is
quite similar to the creation of a vortex found in
computer simulation of the ion-acoustic beam
shock,” and also to the formation of holes in the
two-stream instability.* The most important re-
sult of our calculation is that it shows our experi-
mentally observed electron hole to be caused by
this phase-space vortex effect, i.e., a trapping

of electrons.

Both in the experiment and in the computer sim-
ulation, we find that the hole moves with a veloci-
ty that is close to the electron thermal velocity.
The electron hole is thus an entirely kinetic ef-
fect characterized by a strong coupling between
the pulse and the particles. Although the hole is
not a stable BGK equilibrium,®°® theory predicts
that its deformation is a slow process,® and we
have been unable to detect any significant change
of shape within the time it takes it to pass the full
length of our waveguide. The hole represents an
equilibrium that is very sensitive to perturbations
of the electron orbits in phase space, e.g., elec-
tron-neutral collisions. These will destroy the
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FIG. 4. Damping of electron hold due to electron-
neutral collisions, x=0.7 m. P, is the pressure of
neutral helium.

refined structure of the electron velocity distribu-
tion and tend to restore the original unperturbed
Maxwellian distribution, whereafter the pulse will
be rapidly Landau damped since its velocity is ap-
proximately v,. By slowly increasing the neutral
pressure with helium, we can entirely destroy the
hole structure at even moderate neutral pressures;
see Fig. 4. The damping length for ordinary col-
lisional damping!® of a Trivelpiece-Gould mode at
the hole velocity is ~1.5 m at 5X10™* mm Hg,
thus ruling out that the damping is explained by
simple collisional damping. Note also that the
front of the soliton is only weakly affected by col-
lisions, as expected.

Although theoretical investigations of hole equi-
libria are sparse, their existence is well known
from computer studies of one-dimensional, two-
stream, or bump-on-tail instabilities (in our ex-
periment the one-dimensionality is brought about
by the strong magnetic field). One important ob-
servation from our study is that almost any form
of the excitation will develop into one or more
electron holes provided that the amplitude exceeds
¢.. From the results of this and previous studies,
it is obvious that the solitary hole should be con-
sidered as a quasiparticle just like the soliton.
Solitons are known to preserve their identity dur-
ing collisions and they may be accelerated by,
e.g., density gradients. Hence, a soliton may be
considered as a particle with negative charge and
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FIG. 5. Hole-hole coalescence. Time pictures at
various distances.
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positive mass. By analogy we assign a positive
charge to the solitary hole, and consistency then
requires its effective mass to be negative.? This
in turn implies that the Coulomb repulsion be-
tween two holes gives rise to an attraction. In
order to demonstrate the quasiparticle behavior
of the solitary electron hole, we modified the ex-
citing pulse so that two holes close to each other
and having almost equal velocity were excited;
see Fig. 5. Following their trajectory we ob-
served an attraction and a subsequent coalescence
that prevailed throughout the entire plasma col-
umn. The collision thus appears to be inelastic.
Such a coalescence has already been observed in
numerical investigations.* If, however, the ini-
tial velocity difference is large, two holes are
observed to pass through each other. We may
thus conclude that the observed properties of the
solitary electron holes are indeed compatible
with those expected for quasiparticles, at least
within the limits of space and time in our experi-
mental setup.

We are aware that the solitary holes described
in this Letter may have some relevance for de-
scribing one-dimensional strong Langmuir turbu-
lence.!!
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A discussion of phase transitions in two-dimensional 3He is presented. A new type of
phase transition is proposed, in which “islands of reversed 1” spontaneously nucleate,
leading to an Ising-like transition. It is shown that such transitions may need to be taken
into account, possibly competing with the well-know Kosterlitz-Thouless transition. Con-
sequences of both types of transition are discussed.

Phase transitions in two-dimensional systems
have attracted considerable attention over the
past few years since the discovery of Kosterlitz
and Thouless® that a new kind of ordering (“topo-
logical ordering”) may exist in these systems
when conventional order is absent. This new type
of ordering is destroyed upon the unbinding of
vortex-antivortex pairs (or their analogs) in the
system under consideration. The phase diagram

then exhibits a line of critical points below T,
with continuously variable critical exponents.?
Renormalization-group analyses based on these
ideas have recently been applied to two-dimen-
sional superfluid “He and X-Y ferromagnets,? two-
dimensional solids,® and two-dimensional liquid
crystals.*®

Experimental attention is just now beginning to
be focused on two-dimensional superfluid *He
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