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Large-amplitude, spatially modulated coherent high-frequency waves produce a change in
the plasma equilibrium. The nonresonant wave-particle interaction is investigated and the
local, time-independent Vlasov distribution function is found for the one-dimensional case to
all orders in the electric field amplitude. For a critical value of the electric Geld amplitude
at a fixed temperature, the distribution function exhibits "double hump" but the Penrose cri-
terion shows that it is stable.

In laser-pellet experiments and rf heating in
tokamaks, large-amplitude high-frequency waves
are launched into the plasma. These waves will
be spatially modulated by the finite extent of the
external source, even for homogeneous plasmas.
If the phase velocity of the waves is much larger
than the thermal velocity the resonant effects
(Landau damping trapping) are negligible. The
modulation of the amplitude is crucial in chang-
ing the plasma equilibr jum. Only recently ' it
was pointed out that the phase-space dependence
of the distribution function is modified in a non-
trivial manner. However, there has been no suc-
cess in finding an exact solution of the Vlasov
equation even in the one-dimensional case. In
this paper I present a solution which is valid for
a general form of the modulation and arbitrarily
large amplitudes of the electric field.

The ponderomotive effect is present when L/T
«v, where L is the scale length of the modula-
tion, T is the time scale (time Tayloring, pump
depletion) and v is the velocity of a particle. For
typical laser and rf experiments L/T = 0.01vr,
and my analysis is valid for nearly all of the
phase space. In the homogeneous limit L/T»v
and no ponderomotive density change occurs. We
shall find the solution in both limits, but not for
an arbitrary value of vT/L. Therefore, a smooth
transition between the ponderomotive distribution
function and the homogeneous limit cannot be ob-
tained.

First we look for a local, time-independent dis-
tribution function f,= f,(v, v, (x)), wh-ere v, (x)
=qE, (x)/m~, and v, is the frequency of the pump.

f, describes the steady state on a time scale
much shorter than the collisional time scale. In
the limit v, —0, f, becomes the Maxwellian dis-
tribution. The general solution of the Vlasov
equation will depend also on all derivatives of
v, (x). However, these contributions are smaller
by a factor of v/L&u, «1. Our solution is exact
in the sense of being valid for v,/v r arbitrarily
large. A general form of the modulation function

f = '„,exp(-v~ '[v+v, sin(~, t)]']. (2)

The time-independent component of (2) is simply
y oo

(f) 0
~

eiP e 0 /4J (P~ )dP
2+UT

where the bracket (~ ~ ~ ) denotes time average
over a period 2v/v„with ~ =v/vr and ~, =v,/vr.
This is the equilibrium in the oscillating frame
analysis. Obviously, the kinematics will not
change the properties of the plasma. For exam-

v, (x) includes all the realistic cases where v, (x)
e 0 for a finite region of space and v, (xs) = 0 on
the boundary of that region. x~ could extend to
+ ~ if v, '(x) is integrable in all space. This al-
lows us to decouple the Vlasov-Maxwell system
of equations and solve a truly nonlinear problem.

One can examine the ponderomotive change of
the electron distribution function and neglect the
effect on the ions, which is smaller by the mass
ratio m/M. This is not completely consistent
and one should introduce an ambipolar potential
due to charge separation. Only when the pondero-
motive and ambipolar potentials are balanced to
produce charge neutrality can the problem be
easily resolved. I assume that this is the case.

For simplicity one uses the dipole approxima-
tion for the pump. This assumption is justified
when u&,/k, »vr. The finite k, of the high-fre-
quency wave does not lead to an important change
in the plasma state. The corrections are of the
order k,vr/u&, for the one-dimensional example.
However, in a realistic three-dimensional case
the effect of a finite k, leads to the generation of
a steady-state current and a magnetic field.

The Vlasov equation for electrons in an exter-
nally driven high-frequency field (k, = 0) is

Bf/&t =vVf =&a,v, (x) cos(~, t)V„f.

If the field is not modulated [v,(x) = const], the
solution of (1) is given by a displaced Maxwellian
distribution

1979 The American Physical Society 497



VOLUME 42, NUMBER 8 PHYSICAL REVIEW LETTERS 19 FEBRUARY 1979

pie, n=n„ i.e. , the density is undisturbed.
The nontrivial modification in the distribution

function is due to the modulation of the field am-
plitude. The solution of Eq. (1) can be written in
a Fourier series:

f = f, +Q [f„exp(-in~, t)+c c ]. . (4)

By substituting (4) in (1) one obtains the follow-
ing infinite set of equations:

(v/~. )Vf. = W.V.(f,+ f,*), (5)

[-in+ (v/wo)V] f„=mzoV„(f„, + f„+,), pg
o 1. (6)

Since we consider (v/co, )Vf„«f„, Eq. (6) can be
simplified:

where I have introduced the dimensionless vari-
ables ~ and I,. One may note the appearance of
a ponderomotive force term V(w, '). The concept
of a force is not enough to describe the profound
change in the phase-space dependence of the dis-
tribution function and is not very useful in the
present analysis. If one considers (8) as a quasi-
linear equation for f, (f„,f,~"-f,) a solution is
known. ' The resu)t is completely different from
the exact solution, where the harmonics of all
orders are taken into account. Formula (8) is a
recurrence relation between f,~'~ = f„on the right-
hand side and f,~" to second order in w, . An in-
tegration f„" dx of (8) and use of the boundary con-
dition w, (x,) = f,"'(x~)= 0 lead to

f =. („1
——

)
—',v,v„(f„,+ f„„) (7) fo" =(-~~o')(1 —~v ')f~.

wVf, ~'&=2(~,V )mV(~~, V )f~, (8)

f, = ——,(m V„)O'f~ — . (mo)'(vV„'+ '„v „)f42(00

From Eq. (7) for n=1 has

We shall find the Taylor series of f, in the
neighborhood of v, = 0. The analytical continua-
tion for all vp is performed by summing the ser-
ies. This method of calculating f, is equivalent,
in some sense, to the integration over exact par-
ticle trajectories. It has the advantage of being
applicable for any form of the amplitude v, (x).

We shall calculate explicitly the series to v,
and then suggest a general formula. After a rath-
er lengthy algebra the result was checked to v, '.
One should point out that it is not possible to de-
rive a single equation for any of the Fourier com-
ponents from the infinite set of differential equa-
tions. Thus, some mathematical intuition is al-
ways called for in breaking the chain of equations.
To find f, to order v,' substitute f, from (7) in

(5) and neglect the contribution from f, (order
v,'). The result is

The fourth-order term f,~4~ involves the second
harmonic f,. The lowest-order term for f, is
[see (7) for n = 2],

1 2 VV
f~= . 1-—„—,vV f—22 2 (dp

(10)

The third-harmonic term f, leads to contribu-
tions for f, in v,'. f, is determined to first order
inv, :

1 . vVf = . 1 —i pvoV f
(d 0

One substitutes (11) in (10) to find f, in terms of
f„. Only the first-order terms in the operator
(v/g&, )V are taken into account. This is the es-
sence of the approximation, which leads to a lo-
cal solution for f,. f, will depend only on the
field amplitude and all derivative terms are ne-
glected. For f„one obtains

(12)

f~+ f,*= —
2

V (f, —f,*)+ —
2 V„(2f,+f, + f,*).1v vV v

0

(14)

In (13) we substitute the result for f, from (12). From Eq. (5) one obtains, after some algebra, a re-
currence relation for f,«:

goVf «&=2(~~,)'V„soV Vf,"'+V(~so)'[V~~V~fo"' —~(~~OV~) (~V~ +V~~

—~g(gwo) V~'wV~ f~].
Substitute in (14) the result for f,~'~ from (9) and after a straightforward calculation one can write

f,«& = —,'(- ~,')'[-,'(-.'V.')'- 2(-.'V.')+ l]f, (15)
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So far we have moved two steps up the infinite set of equations. However, some general features be-
come apparent. One can write, to all orders in u)„

f.""'= (1/ t)(- ~v.')"&.(-'v ')f,
where P„ is polynomial function of the differential operator 9'„. To identify this polynomial I have
written the expressions in (9) and (15) in a suggestive form. The reader may verify that'

z„(-.'v„') -=L„(-.'v '),

(16)

where I.„ is the Laguerre polynomial of order n. I have confirmed this result to order coos after an ex-
ceedingly long calculation. The Taylor series for f, can be written as

f,(w, w, ) = Q (1/nt)(- 2wp')"L„(,'v ')—f„.
n=O

To sum the series I take the Fourier transform of f, in w:

(IS)

fp(P)= f "„e " Q (-~a.')"(I/n()f-. (-2p')f~dw.
n=0

The series in the integrand can be easily summed' and leads to

P (I/n l )(- ~2p ) + ( 2p') = exp(- ~2p Pp(pwp).
n=O

After a trivial integration in (19), the Fourier transform f,(p) becomes

fp(P) = (n./v &)exp(- ~p.' —-'O'Pp(Wp).

Finally, the local time-independent "exact" solution is

f,(w, w, ) = exp(- ~pp')(np/2mvr) J
"

exp(ipw) exp(- p'/4) Jp(pwp) dp.

(19)

(20)

(21)

(22)

The plasma equilibrium has been found to all
orders in the electric field amplitude. The for-
mula is remarkably simple and, in fact, looks
almost like the oscillating-frame result, except
for the exponential dependence on zvo. However,
it is this dependence that significantly changes
the "ground" state of the plasma. I shall call f,
in (22) the renormalized distribution function.

The density is given by

n = n, exp(- ~2,').
This formula is well known from the investiga-
tion of rf confinement of plasmas. The exponen-
tial profile modification is indeed consistent with
the Vlasov equation. Furthermore, the temper-
ature changes, because of the nonresonant diffu-
sion:

[f tv fp(w, wp) dw j[ f fp(w, wp) dw j
= T,(1+w,'). (24)

The most striking feature of the renormalized
distribution function is the occurrence of a dou-
ble hump above a certain critical value so„. In
Fig. 1 I have plotted f, for w, = 1, 1.5, 2. One
can see the appearance of a positive slope in the
bulk of the distribution function. It seems that at
a certain critical point the plasma is split into

two beams. At w„= 1.25 a second maximum de-
velops. However, one can show that the double
hump does not lead to an unstable equilibrium.
With the minimum of the distribution function at
so =0 the Penrose function is

I = f [fp(0, wp) —f ( p,ww)jpwd'N.

A simple integration with f, given by (22) shows

(25)

0.4
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0.0 3~w

FIG. 1. Plot off p(N, Np) from EZ. (22) for cop= 1, 1.5,
and 2. (Here N =v/vr and Np=vp/vz, .)
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that P is positive for all values of the normalized
electric field amplitude se, . However, instabili-
ties may arise due to resonant mode coupling be-
tween the pump wave and waves from the thermal
noise and the latter can grow to large amplitudes.

The homogeneous result is recovered in the
limit L/T»v. In this case the infinite chain of
relations from the Vlasov equation becomes

(26)

0

n& 1. (27)

A straightforward calculation gives the following
infinite series for f,":

fo"= g (n!) '(~20')"(-,'V ')"f„
n=0

=Io(&OVcy)f (28)

where I, is the Bessel function of an imaginary
argument. By summing the series in the same
way as before, see Eqs. (18)-(22), one finds

f "= ' f e""e '"S(pto )dp.2' T
0 0 (29)

This is the result of the oscillating-frame analy-
sis, i.e. , the homogeneous limit.

My derivation unifies two seemingly different
approaches: the oscillating-frame analysis and
the concept of a ponderomotive force. It is only
through the Vlasov equation for modulated waves
that their relationship can be properly estab-
lished. The strong nonresonant wave-particle in-
teractions (to, & 1) lead to a radical departure
from the traditional results of linear and quasi-
linear theories.

To understand the nonlinear laser-plasma in-

teractions the model above should be extended to
include a modulated electromagnetic wave. In
this case the field amplitude is elliptically polar-
ized and is modulated in the plane of the ellipse.
A finite k, of the pump should be included to de-
scribe the steady-state current generated along
the direction of propagation. As an example of
applications to heating in tokamaks examine the
case of a lower-hybrid wave launched by a wave-
guide array. The nonlinear coupling can be de-
scribed by the one-dimensional model. The ex-
ternal structure generates a field along the mag-
netic field lines and is modulated in the same di-
rection. The velocity of oscillation across the
magnetic field lines is small and the density mod-
ulation is well represented by Eq. (23). I believe
that future experiments, both for laser-pellet in-
teractions and heating in tokamaks, will provide
further insight into the nature of the truly nonlin-
ear processes.
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