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The Foldy-Wouthuysen transformations are not always unitary within the space of solu-
tions of the Dirac equation with boundary conditions. Therefore, imprecise nonrelativis-
tie limits ean be obtained for particular interactions if these transformations are always
used. This assertion is confirmed by considering the ease of plane electromagnetic
waves and by comparing with the result given by an exact (closed-form) unitary transfor-
mation.

In a well-known paper, Foldy and Wouthuysen' (FW) derived the nonrelativistic approximation (to or-
der I/m') of the external-electromagnetic-field Dirac equation by means of a sequence of canonical
transformations. It is the generalized Pauli equation (GPE) [i&/&t -H@ ]y

' = 0, where, with e & 0,
II~'~ =y'fez+ (I/2m )(-i & + eA)'] —eA'+ (e/2m)y tJ H+ (e/Sm')&' E

+ (e/4m')&. [E&& (- i& + el)] + i (e/8m')tJ (»& E).

Thei.r method was developed on the model of the
field-free case where the unitary transformation
can be found in closed form. They showed its
physical meaning which is to transform a free-
electron state y~ (of given four-momentum p) in-
to a two-component spin state.

Their idea was generalized later to higher-
spin equations (Duffin-Kemmer-Petiau' and Bhab-
ha' equations). As the space of solutions of these
equations is an indefinite-metric space, the gen-
eralized FW transformations" are then not uni-
tary but metric unitary.

The FW procedure is not free of difficulties,
however. In an external-field problem, a time-
dependent unitary transformation may not con-
serve energy. The time-dependent FW transfor-
mation is known to yield energy ambiguities. ~

The difficulty which is in question here concerns
the very problem of unitarity of the FW proce-
dure. My contention is as follows.

While a transformation U (assumed to be inver-
tible) can always be used to transform the equa-
tion

(i&/&t -a)q =0

into

(is/st —H')q' = 0,

where g'=Up a,nd

II'=UHU ' —U[ts/st, U '],

it is only when U is unitary that (I) and (II) are
said to be equivalent. If U = e*, g and g' are uni-
tarily equivalent if and only if S is self-adjoint'
(not only Hermitian). Thus, the generator S

= —(i/2m)y (i%+ eA) of the first FW transforma--
tion has to be se1f-adjoint within the space of all
the solutions ( of (I) (which satisfy appropriate
boundary conditions) for the GPE and the Dirac
equation to be unitarily equivalent. Now, it is
tacitly assumed that introducing an electromag-
netic interaction by minimal-coupling prescrip-
tion (i&" i&"+-eA") yields an Hermitian Hamilton-
ian. While this should be true for the total inter-
action Hamiltonian, this assumption may fail for
one part of it (the external-field problem).

In fact, let D(0) be the space within which the

three-momentum operator -i& is defined and is
self -adjoint. Introducing an external-field inter-
action involves defining a new domain D(A,„,) with-
in which the operator -i&+ eA„, will operate.
The solutions g of (I) belong necessarily to D(A,„,).
Now, it can occur" that for particular interac-
tions and boundary conditions -i& is not self-ad-
joint within D(A,„,). In such a case (' =e' g is
not unitarily equivalent to (, in which case (g', P')
C ((,(). In summary, self-adjointness of the
three-momentum operator can be lost because of
the interaction with an external field and the im-
position of boundary conditions, and the FW trans-
formations are not always unitary.

I shall here prove this fact by considering Vol-
kov's exact solution' of the Dirac equation for an
electron in the classical external field of a plane
electromagnetic wave (of arbitrary shape). As
is well known, Volkov states play an essential
part in the calculation of scattering processes
that occur in an intense laser beam.

The case of plane waves is known as a patholog-
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ical case. ' The momentum operator and Hamil-
tonian are not Hermitian' within the space of Vol-
kov states with asymptotic conditions (necessary
to recover a free-particle state). Therefore,
the generator S = —(i/2m)y ' (-iV +eA) of the
first FW transformation is not seU-adjoint with-
in the space of those solutions. In other words,
the solution X~~') of the GPE (for plane waves)
and the Volkov solution g~, which both reduce to
free-particle states of given momentum p when
A-0 (that is when ~-+ ~), are not unitarily equiv
ale nt.

To see this more explicitly, let us consider the
Volkov state"

&, =Tpexp[ -i (e/n p)Ap]yp,

M",= 5",—(e/n p) (n "A„-A"n„)- 2 (e/n'p)'A~n "n„,

where

T&
——1+ (e/2n'p)y ny ' A,

and where

A& =f „(A p + 2eA ) dv'.

The electron motion described by a Volkov state
is quasiclassical (that is, is solution of the Lo-
rentz force equation). Furthermore, this state
describes a spin motion given by the classical
Thomas-Bargmann-Michel- Telegdi (TBMT)
equation. '

Let us consider the operator'

(2)

which is such that p'"=M",p" is the classical four-momentum of the electron in the wave. As M is a
Lorentz-type matrix (hence p'~ =parn'), we can transform the algebraic equation satisfied by the free
state y~ into an algebraic equation satisfied by the Volkov state (~:

(y'p —B1)cpp = (y Mp p —Fll)cpp = 0p

that 1S~

(TP iy p'Tp-m)(p, =0,

where T~ is just the spinor image' of the Lorentz-type operator M (M"„y"=T~ 'y" T~). Equation (3)
shows that (~ satisfies the simple algebriac equation

P"(p =(r'r 0'+ r'~)8p,

which differs from the algebraic equation satisfied by y~ only by the replacements p'-p"; p-p'.
Therefore, the Volkov state (~ can be cast in a two-component form by means of the FW-like unitary
transformation (F~.~ =F~i ') (~' =F~.(~, where F~. =exp[y p'0'] with 8' = (2 Ip' I) 'tan '(Ip' I/m). We eas-
ily obtain

( '=I2P "/(P"+~)I"'2I(r 'p'+ ~)/P"+ &~(~=I2P"/(p" +~)~"'2(l+ r')(p;

that is,

q,
' = (P "/p')"' exp[ ip r i(e/n -p)ApI-

SpS'

where W is a constant spinor which can be assumed such that P p,W =+ W, where jf, is the initial spin

vector. Sp is the unitary operator

S,=[(P" )(P". )I--((P" )[l (/2 P)~ -"Al. (/2'P)~ » 9)). (6)

Obviously, when the field is switched off, P'~ becomes identical to the state y'~ obtained from the

free state y'p obtained from the free state happ by using the closed-form field-free F% unitary transfor-
mation. '

The physical meaning of the unitary transformation F~. will appear by seeking a unit vector jf such
that P P'g~' =+ g„'. This relation will be satisfied if

0'P'=Sp& 'I QSq
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Differentiating Eq. (7), we have

(8)

whence it follows that

dP/dt = —(e/n'P)(P'o+ m) ~[(n'P+ m)P&&H+ (p'H)P&n]

which is recognized as the TBMT equation' in which the fields are those of a plane electromagnetic
wave. Now, the TBMT equation is known as rigorously valid in the plane-wave case. ' Hence, g~' sim-
ply describes a spin state and exhibits the expected properties of a two-component wave function ob-
tained by a closed-form FW transformation. Therefore, the correct nonrelativistic limits of the Vol-
kov state g~ can simply be obtained by expanding (~' to the desired order in 1/m. To order 1/m' we
readily get

(~' 2 =[1+(e/2m')dAJdr] exp[-i(e/m)(1+'5 p/m) A~] exp[-i(m+ P/2m)t+ip''P]Sq 2 W,

where

S~ =1 —(e A /8ms)+i(e/4ms)5 A&&p+i(e/2m)(1+@'p/m) f n&&A. (10)

As expected from the above discussion, we find

that g~' " is not a solution of the GPE. It could
eventually be the solution of another equation
transformed from the GPE by an (even) unitary
transformation, however. Now, if we seek the
solution Xp of the GPE which reduces to yp'
for A- 0, we can get it in the form

y~'" = exp[(e/8m') F ~ H] q, '('&,

thus exhibiting the unitary inequivalence of these
two solutions. As g~'is) is unitarily equivalent to
order 1/m with (» we can therefore conclude
that Xp is not the nonrelativistic limit of the
Volkov state g~. Instead, (~'@) is the correct lim-
it. It describes to order 1/m' the correct elec-
tron-spin motion [given in quaternionic form by
Eqs. (7) and (10)], which y~i'i does not.

Let us remark that the difficulties of the FW
procedure here are due to the time dependence
of the fields. The operator exp[(e/8m')5 ~ H] com-
mutes (to order 1/m') with the Hamiltonian (1)
but not with is/Bt. In the special (limit) case of a
constant and uniform field where E and H a,re per-
pendicular and equal in magnitude (crossed fields),
g~'t'i is effectively the solution of the GPE.

On the other hand, the unitary inequivalence of
the GPE and Dirac equations for plane waves can
be significant in the high-frequency domain,
which has recently received a lot of attention. "

In conclusion, using a space-time-dependent
case where the Dirac equation is solvable exactly,
I have shown that FW transformations are not al-
ways unitary. Unitarity (or metric unitarity) and
Hermiticity of the external-field interaction Ham-
iltonian can depend on the form of the external in-

! teraction, on its time dependence, and on the
boundary conditions. This discussion touches on
the problem of a proper interpretation of the non-
Hermitian operators that occur because of the
external-field approximation.
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The production of the Y family in proton-nucleus collisions is clarified by a sixfold increase

in statistics. Constraining Y,Y' masses to those observed at DORIS we find the statistical

significance of the Y" to be 11 standard deviations. The dependence of Y production onp&, y,
and s is presented. Limits for other resonance production in the mass range 4-18 GeV are

determined.

We report on further details of upsilon" pro-
duction in proton-nucleus collisions at Fermilab.
In addition to data published previously, ' 4 we
present here results from data taken in 1978.
Our entire data sample can be divided into four
subsets: (I) published data with 400-GeV incident
proton energy and 1200 Y (or Y') events, mass
resolution ( &I/M) of 2.2% (rms)'2; (II) 200/300
GeV, 500 &'s, 2&I/M=2. 2%%uo; (III) 400 GeV, 7000
&'s, bllf/M=2. 2%%uo; (IV) 400 GeV, 500 7"s, ~M
=1.7%%uo. Except where noted all results here-
after are from the 400-GeV data. The resolution
improvement in data set IV was achieved by low-

ering the intensity of protons so that a multiwire
proportional chamber could be installed and op-
erated halfway between the target and the analysis
magnet.

All the data from sets I, III, and IV between
masses of 7.3 and 12.9 GeV were fitted simul-
taneously. Cross sections per Pt nucleus were
converted to cross section per nucleon by divid-
ing by A pt =195. An isotropic decay-angle dis-
tribution was assumed for resonances while 1
+cos'8 (Gottfried- Jackson frame) was assumed
for the continuum. A linear exponential form
was assumed for the continuum. This form fits
the continuum well in this mass range.

The continuum shape, resonance mass separa-
tions, and relative cross sections were the same
for all data sets but mass resolution, ' acceptance,
normalization, ' and mass scale were particular
to each set. Assuming three resonances and let-
ting all parameters vary we obtain the first col-
umn in Table I.' This fit yields the spacing m~~

-IT=0.57+ 0.03 GeV. If we constrain m~ -m~
to the value of 0.555+0.011 GeV measured at
DORIS' we obtain the result in the second column
of Table I. In this case assuming two resonances
instead of three increases g' by 125 indicating a
statistical significance of 11 standard deviations
for the Y". We consider this convincing evidence
for a third resonance. Data set III with continuum

subtracted is plotted in Fig. 1 and compared with
the fit constrained by the DORIS measurements.

These results combined with the observation of
~ and ~' at DORIS" strongly support the inter-
pretation that the &, Y', and &"are the n'S, QQ
states (n =1,2, 3) of a new hea, vy quark with

charge 3 ("bottom"). Successful fitting of both

J/g and Y families with a common potential, ""
successful prediction of ~ 3 states, "mz» -m~, '"
I'«(& and Y'),""and 13@'-pp),"all reinforce
this interpretation.

In Fig. 2 we show the energy dependence of Y
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